Cargando…
Ion-Driven Electrochemical Random-Access Memory-Based Synaptic Devices for Neuromorphic Computing Systems: A Mini-Review
To enhance the computing efficiency in a neuromorphic architecture, it is important to develop suitable memory devices that can emulate the role of biological synapses. More specifically, not only are multiple conductance states needed to be achieved in the memory but each state is also analogously...
Autores principales: | Kang, Heebum, Seo, Jongseon, Kim, Hyejin, Kim, Hyun Wook, Hong, Eun Ryeong, Kim, Nayeon, Lee, Daeseok, Woo, Jiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950570/ https://www.ncbi.nlm.nih.gov/pubmed/35334745 http://dx.doi.org/10.3390/mi13030453 |
Ejemplares similares
-
Three-dimensional vertical structural electrochemical random access memory for high-density integrated synapse device
por: Kim, Hyejin, et al.
Publicado: (2023) -
Ag-Ion-Based Transparent Threshold Switching Selector with Filament-Size-Dependent Rectifying Behavior
por: Seo, Jongseon, et al.
Publicado: (2022) -
Alternative negative weight for simpler hardware implementation of synapse device based neuromorphic system
por: Han, Geonhui, et al.
Publicado: (2021) -
Solid state thin electrolyte to overcome transparency-capacity dilemma of transparent supercapacitor
por: Seo, Jongseon, et al.
Publicado: (2022) -
Self‐Curable Synaptic Ferroelectric FET Arrays for Neuromorphic Convolutional Neural Network
por: Shin, Wonjun, et al.
Publicado: (2023)