Cargando…
Making the Most of Single Sensor Information: A Novel Fusion Approach for 3D Face Recognition Using Region Covariance Descriptors and Gaussian Mixture Models †
Most commercially successful face recognition systems combine information from multiple sensors (2D and 3D, visible light and infrared, etc.) to achieve reliable recognition in various environments. When only a single sensor is available, the robustness as well as efficacy of the recognition process...
Autores principales: | Križaj, Janez, Dobrišek, Simon, Štruc, Vitomir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950587/ https://www.ncbi.nlm.nih.gov/pubmed/35336559 http://dx.doi.org/10.3390/s22062388 |
Ejemplares similares
-
Robust Depth Image Acquisition Using Modulated Pattern Projection and Probabilistic Graphical Models
por: Kravanja, Jaka, et al.
Publicado: (2016) -
Learning to Combine Local and Global Image Information for Contactless Palmprint Recognition
por: Stoimchev, Marjan, et al.
Publicado: (2021) -
k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification †
por: Meden, Blaž, et al.
Publicado: (2018) -
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems
por: Hermosilla, Gabriel, et al.
Publicado: (2015) -
Improved local descriptor (ILD): a novel fusion method in face recognition
por: Karanwal, Shekhar
Publicado: (2023)