Cargando…
HIV-1 Integrase Inhibitory Effects of Major Compounds Present in CareVid™: An Anti-HIV Multi-Herbal Remedy
In our continued study on the anti-HIV activity of compounds present in CareVid(TM), we report the HIV-1 integrase ((HIV-1 IN) inhibitory effects of pellitorine (1), oleuropein (2), magnoflorine (3), crotepoxide (4), ent-kaurane-16β,17-diol (5), crotocorylifuran (6), lupeol (7), betulin (8), and ell...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950597/ https://www.ncbi.nlm.nih.gov/pubmed/35330168 http://dx.doi.org/10.3390/life12030417 |
Sumario: | In our continued study on the anti-HIV activity of compounds present in CareVid(TM), we report the HIV-1 integrase ((HIV-1 IN) inhibitory effects of pellitorine (1), oleuropein (2), magnoflorine (3), crotepoxide (4), ent-kaurane-16β,17-diol (5), crotocorylifuran (6), lupeol (7), betulin (8), and ellagic acid (9) in an in vitro enzyme assay, and in an in silico study. Ellagic acid, pellitorine, lupeol, and betulin showed an in vitro percentage inhibition against HIV-1 IN of 21.1%, 19.0%, 18.5%, and 16.8%, respectively, at a standard concentration of 25 μg/mL. However, from a pharmacokinetic perspective, ellagic acid has poor bioavailability, due to rapid elimination in metabolism in the gut microbiome. It was postulated that known gut catabolites of ellagic acid, urolithin A (10) and urolithin B (11) could be more promising candidates in exploring the anti-HIV activity of ellagic acid-rich medicinal species consumed orally. On the contrary, urolithin A and urolithin B demonstrated lower activity with comparison to ellagic acid. The binding affinity of compounds 1–9, urolithin A, and urolithin B against the catalytic domain of HIV-1 IN was also explored by in silico methods. Docking studies showed oleuropein as the best candidate, with a predicted energy of binding of ΔG −5.81 kcal/mol, while ellagic acid showed moderate predicted inhibition (ΔG −4.38 kcal/mol) caused by the interaction between the carbonyl and the key Mg(2+) ion in the active site. |
---|