Cargando…

Study of Several Alginate-Based Hydrogels for In Vitro 3D Cell Cultures

Hydrogel, a special system of polymer solutions, can be obtained through the physical/chemical/enzymic crosslinking of polymer chains in a water-based dispersion medium. Different compositions and crosslinking methods endow hydrogel with diverse physicochemical properties. Those hydrogels with suita...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiao, Weijie, Li, Xiaohong, Shan, Jingxin, Wang, Xiaohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950797/
https://www.ncbi.nlm.nih.gov/pubmed/35323260
http://dx.doi.org/10.3390/gels8030147
Descripción
Sumario:Hydrogel, a special system of polymer solutions, can be obtained through the physical/chemical/enzymic crosslinking of polymer chains in a water-based dispersion medium. Different compositions and crosslinking methods endow hydrogel with diverse physicochemical properties. Those hydrogels with suitable physicochemical properties hold manifold functions in biomedical fields, such as cell transplantation, tissue engineering, organ manufacturing, drug releasing and pathological model analysis. In this study, several alginate-based composite hydrogels, including gelatin/alginate (G-A), gelatin/alginate/agarose (G-A-A), fibrinogen/alginate (F-A), fibrinogen/alginate/agarose (F-A-A) and control alginate (A) and alginate/agarose (A-A), were constructed. We researched the advantages and disadvantages of these hydrogels in terms of their microscopic structure (cell living space), water holding capacity, swelling rate, swelling–erosion ratio, mechanical properties and biocompatibility. Briefly, alginate-based hydrogels can be used for three-dimensional (3D) cell culture alone. However, when mixed with other natural polymers in different proportions, a relatively stable network with a good cytocompatibility, mechanical strength and water holding capacity can be formed. The physical and chemical properties of the hydrogels can be adjusted by changing the composition, proportion and cross-linking methods of the polymers. Conclusively, the G-A-A and F-A-A hydrogels are the best hydrogels for the in vitro 3D cell cultures and pathological model construction.