Cargando…
Unraveling the Structural, Dielectric, Magnetic, and Optical Characteristics of Nanostructured La(2)NiMnO(6) Double Perovskites
Double perovskite La(2)NiMnO(6) (LNMO) nanoparticles and nanorods were synthesized via a hydrothermal process, where only aqueous inorganic solvents are used to regulate the microscopic morphology of the products without using any organic template. They crystallized in a monoclinic (P2(1)/n) double...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950916/ https://www.ncbi.nlm.nih.gov/pubmed/35335792 http://dx.doi.org/10.3390/nano12060979 |
Sumario: | Double perovskite La(2)NiMnO(6) (LNMO) nanoparticles and nanorods were synthesized via a hydrothermal process, where only aqueous inorganic solvents are used to regulate the microscopic morphology of the products without using any organic template. They crystallized in a monoclinic (P2(1)/n) double perovskite crystal structure. The LNMO nanoparticles exhibited spherical morphology with an average particle size of 260 ± 60 nm, and the LNMO nanorods had diameters of 430 ± 120 nm and length about 2.05 ± 0.65 μm. Dual chemical oxidation states of the Ni and Mn ions were confirmed in the LNMO samples by X-ray photoelectron spectroscopy. Strong frequency dispersion dielectric behavior observed in the LNMO ceramics, is attributed to the space charge polarization and the oxygen vacancy induced dielectric relaxation. A ferroelectric—paraelectric phase transition appearing near 262 K (or 260 K) in the LNMO ceramics prepared from nanoparticles (or nanorods) was identified to be a second-order phase transition. The LNMO samples are ferromagnetic at 5 K but paramagnetic at 300 K. The LNMO nanoparticles had larger saturation magnetization (M(S) = 6.20 μ(B)/f.u. @ 5 K) than the LNMO nanorods (M(S) = 5.68 μ(B)/f.u.) due to a lower structural disorder in the LNMO nanorods. The semiconducting nature of the nanostructured LNMO with an optical band gap of 0.99 eV was revealed by the UV–visible absorption spectra. The present results enable the nanostructured LNMO to be a promising candidate for practical spintronic devices. |
---|