Cargando…
A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States
The COVID-19 pandemic that began at the end of 2019 has caused hundreds of millions of infections and millions of deaths worldwide. COVID-19 posed a threat to human health and profoundly impacted the global economy and people’s lifestyles. The United States is one of the countries severely affected...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950980/ https://www.ncbi.nlm.nih.gov/pubmed/35329019 http://dx.doi.org/10.3390/ijerph19063327 |
_version_ | 1784675273431580672 |
---|---|
author | Chen, Jinjie Song, Joon Jin Stamey, James D. |
author_facet | Chen, Jinjie Song, Joon Jin Stamey, James D. |
author_sort | Chen, Jinjie |
collection | PubMed |
description | The COVID-19 pandemic that began at the end of 2019 has caused hundreds of millions of infections and millions of deaths worldwide. COVID-19 posed a threat to human health and profoundly impacted the global economy and people’s lifestyles. The United States is one of the countries severely affected by the disease. Evidence shows that the spread of COVID-19 was significantly underestimated in the early stages, which prevented governments from adopting effective interventions promptly to curb the spread of the disease. This paper adopts a Bayesian hierarchical model to study the under-reporting of COVID-19 at the state level in the United States as of the end of April 2020. The model examines the effects of different covariates on the under-reporting and accurate incidence rates and considers spatial dependency. In addition to under-reporting (false negatives), we also explore the impact of over-reporting (false positives). Adjusting for misclassification requires adding additional parameters that are not directly identified by the observed data. Informative priors are required. We discuss prior elicitation and include R functions that convert expert information into the appropriate prior distribution. |
format | Online Article Text |
id | pubmed-8950980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89509802022-03-26 A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States Chen, Jinjie Song, Joon Jin Stamey, James D. Int J Environ Res Public Health Article The COVID-19 pandemic that began at the end of 2019 has caused hundreds of millions of infections and millions of deaths worldwide. COVID-19 posed a threat to human health and profoundly impacted the global economy and people’s lifestyles. The United States is one of the countries severely affected by the disease. Evidence shows that the spread of COVID-19 was significantly underestimated in the early stages, which prevented governments from adopting effective interventions promptly to curb the spread of the disease. This paper adopts a Bayesian hierarchical model to study the under-reporting of COVID-19 at the state level in the United States as of the end of April 2020. The model examines the effects of different covariates on the under-reporting and accurate incidence rates and considers spatial dependency. In addition to under-reporting (false negatives), we also explore the impact of over-reporting (false positives). Adjusting for misclassification requires adding additional parameters that are not directly identified by the observed data. Informative priors are required. We discuss prior elicitation and include R functions that convert expert information into the appropriate prior distribution. MDPI 2022-03-11 /pmc/articles/PMC8950980/ /pubmed/35329019 http://dx.doi.org/10.3390/ijerph19063327 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Jinjie Song, Joon Jin Stamey, James D. A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States |
title | A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States |
title_full | A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States |
title_fullStr | A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States |
title_full_unstemmed | A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States |
title_short | A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States |
title_sort | bayesian hierarchical spatial model to correct for misreporting in count data: application to state-level covid-19 data in the united states |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950980/ https://www.ncbi.nlm.nih.gov/pubmed/35329019 http://dx.doi.org/10.3390/ijerph19063327 |
work_keys_str_mv | AT chenjinjie abayesianhierarchicalspatialmodeltocorrectformisreportingincountdataapplicationtostatelevelcovid19dataintheunitedstates AT songjoonjin abayesianhierarchicalspatialmodeltocorrectformisreportingincountdataapplicationtostatelevelcovid19dataintheunitedstates AT stameyjamesd abayesianhierarchicalspatialmodeltocorrectformisreportingincountdataapplicationtostatelevelcovid19dataintheunitedstates AT chenjinjie bayesianhierarchicalspatialmodeltocorrectformisreportingincountdataapplicationtostatelevelcovid19dataintheunitedstates AT songjoonjin bayesianhierarchicalspatialmodeltocorrectformisreportingincountdataapplicationtostatelevelcovid19dataintheunitedstates AT stameyjamesd bayesianhierarchicalspatialmodeltocorrectformisreportingincountdataapplicationtostatelevelcovid19dataintheunitedstates |