Cargando…
A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States
The COVID-19 pandemic that began at the end of 2019 has caused hundreds of millions of infections and millions of deaths worldwide. COVID-19 posed a threat to human health and profoundly impacted the global economy and people’s lifestyles. The United States is one of the countries severely affected...
Autores principales: | Chen, Jinjie, Song, Joon Jin, Stamey, James D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950980/ https://www.ncbi.nlm.nih.gov/pubmed/35329019 http://dx.doi.org/10.3390/ijerph19063327 |
Ejemplares similares
-
Bayesian Correction for Misclassification in Multilevel Count Data Models
por: Nelson, Tyler, et al.
Publicado: (2018) -
A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
por: Wu, Wenqi, et al.
Publicado: (2015) -
Understanding reasons for and strategic responses to administrative health data misreporting in an Indian state
por: Meghani, Ankita, et al.
Publicado: (2022) -
Bayesian hierarchical spatial count modeling of taxi speeding events based on GPS trajectory data
por: Liu, Haiyue, et al.
Publicado: (2020) -
Bayesian hierarchical negative binomial models for multivariable analyses with applications to human microbiome count data
por: Pendegraft, Amanda H., et al.
Publicado: (2019)