Cargando…
WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation
Gesture recognition plays an important role in smart homes, such as human–computer interaction, identity authentication, etc. Most of the existing WiFi signal-based approaches exploit a large number of channel state information (CSI) datasets to train a gestures classification model; however, these...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951077/ https://www.ncbi.nlm.nih.gov/pubmed/35336518 http://dx.doi.org/10.3390/s22062349 |
_version_ | 1784675296942751744 |
---|---|
author | Zhang, Weidong Wang, Zexing Wu, Xuangou |
author_facet | Zhang, Weidong Wang, Zexing Wu, Xuangou |
author_sort | Zhang, Weidong |
collection | PubMed |
description | Gesture recognition plays an important role in smart homes, such as human–computer interaction, identity authentication, etc. Most of the existing WiFi signal-based approaches exploit a large number of channel state information (CSI) datasets to train a gestures classification model; however, these models require a large number of human participants to train, and are not robust to the recognition environment. To address this problem, we propose a WiFi signal-based gesture recognition system with matched averaging federated learning (WiMA). Since there are differences in the distribution of WiFi signal changes caused by the same gesture in different environments, the traditional federated parameter average algorithm seriously affects the recognition accuracy of the model. In WiMA, we exploit the neuron arrangement invariance of neural networks in parameter aggregation, which can improve the robustness of the gesture recognition model with heterogeneous CSI data of different training environments. We carried out experiments with seven participant users in a distributed gesture recognition environment. Experimental results show that the average accuracy of our proposed system is up to [Formula: see text] , which is very close to the accuracy of state-of-the-art approaches with centralized training models. |
format | Online Article Text |
id | pubmed-8951077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89510772022-03-26 WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation Zhang, Weidong Wang, Zexing Wu, Xuangou Sensors (Basel) Article Gesture recognition plays an important role in smart homes, such as human–computer interaction, identity authentication, etc. Most of the existing WiFi signal-based approaches exploit a large number of channel state information (CSI) datasets to train a gestures classification model; however, these models require a large number of human participants to train, and are not robust to the recognition environment. To address this problem, we propose a WiFi signal-based gesture recognition system with matched averaging federated learning (WiMA). Since there are differences in the distribution of WiFi signal changes caused by the same gesture in different environments, the traditional federated parameter average algorithm seriously affects the recognition accuracy of the model. In WiMA, we exploit the neuron arrangement invariance of neural networks in parameter aggregation, which can improve the robustness of the gesture recognition model with heterogeneous CSI data of different training environments. We carried out experiments with seven participant users in a distributed gesture recognition environment. Experimental results show that the average accuracy of our proposed system is up to [Formula: see text] , which is very close to the accuracy of state-of-the-art approaches with centralized training models. MDPI 2022-03-18 /pmc/articles/PMC8951077/ /pubmed/35336518 http://dx.doi.org/10.3390/s22062349 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Weidong Wang, Zexing Wu, Xuangou WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation |
title | WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation |
title_full | WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation |
title_fullStr | WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation |
title_full_unstemmed | WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation |
title_short | WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation |
title_sort | wifi signal-based gesture recognition using federated parameter-matched aggregation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951077/ https://www.ncbi.nlm.nih.gov/pubmed/35336518 http://dx.doi.org/10.3390/s22062349 |
work_keys_str_mv | AT zhangweidong wifisignalbasedgesturerecognitionusingfederatedparametermatchedaggregation AT wangzexing wifisignalbasedgesturerecognitionusingfederatedparametermatchedaggregation AT wuxuangou wifisignalbasedgesturerecognitionusingfederatedparametermatchedaggregation |