Cargando…
Unsupervised Image Registration towards Enhancing Performance and Explainability in Cardiac and Brain Image Analysis
Magnetic Resonance Imaging (MRI) typically recruits multiple sequences (defined here as “modalities”). As each modality is designed to offer different anatomical and functional clinical information, there are evident disparities in the imaging content across modalities. Inter- and intra-modality aff...
Autores principales: | Wang, Chengjia, Yang, Guang, Papanastasiou, Giorgos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951078/ https://www.ncbi.nlm.nih.gov/pubmed/35336295 http://dx.doi.org/10.3390/s22062125 |
Ejemplares similares
-
An Unsupervised 3D Image Registration Network for Brain MRI Deformable Registration
por: Huang, Min, et al.
Publicado: (2022) -
Unsupervised deep learning registration model for multimodal brain images
por: Abbasi, Samaneh, et al.
Publicado: (2023) -
An Unsupervised Learning Approach to Discontinuity-Preserving Image Registration
por: Ng, Eric, et al.
Publicado: (2020) -
Edge-Aware Pyramidal Deformable Network for Unsupervised Registration of Brain MR Images
por: Cao, Yiqin, et al.
Publicado: (2021) -
Editorial: Advances in machine learning methods facilitating collaborative image-based decision making for neuroscience
por: Wang, Chengjia, et al.
Publicado: (2023)