Cargando…

Solving Inverse Electrocardiographic Mapping Using Machine Learning and Deep Learning Frameworks

Electrocardiographic imaging (ECGi) reconstructs electrograms at the heart’s surface using the potentials recorded at the body’s surface. This is called the inverse problem of electrocardiography. This study aimed to improve on the current solution methods using machine learning and deep learning fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ke-Wei, Bear, Laura, Lin, Che-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951148/
https://www.ncbi.nlm.nih.gov/pubmed/35336502
http://dx.doi.org/10.3390/s22062331
Descripción
Sumario:Electrocardiographic imaging (ECGi) reconstructs electrograms at the heart’s surface using the potentials recorded at the body’s surface. This is called the inverse problem of electrocardiography. This study aimed to improve on the current solution methods using machine learning and deep learning frameworks. Electrocardiograms were simultaneously recorded from pigs’ ventricles and their body surfaces. The Fully Connected Neural network (FCN), Long Short-term Memory (LSTM), Convolutional Neural Network (CNN) methods were used for constructing the model. A method is developed to align the data across different pigs. We evaluated the method using leave-one-out cross-validation. For the best result, the overall median of the correlation coefficient of the predicted ECG wave was 0.74. This study demonstrated that a neural network can be used to solve the inverse problem of ECGi with relatively small datasets, with an accuracy compatible with current standard methods.