Cargando…
Hardware Demonstration of SRDP Neuromorphic Computing with Online Unsupervised Learning Based on Memristor Synapses
Neuromorphic computing has shown great advantages towards cognitive tasks with high speed and remarkable energy efficiency. Memristor is considered as one of the most promising candidates for the electronic synapse of the neuromorphic computing system due to its scalability, power efficiency and cap...
Autores principales: | Li, Ruiyi, Huang, Peng, Feng, Yulin, Zhou, Zheng, Zhang, Yizhou, Ding, Xiangxiang, Liu, Lifeng, Kang, Jinfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951175/ https://www.ncbi.nlm.nih.gov/pubmed/35334725 http://dx.doi.org/10.3390/mi13030433 |
Ejemplares similares
-
Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing
por: Wang, Rui, et al.
Publicado: (2018) -
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing
por: Park, See-On, et al.
Publicado: (2022) -
Editorial: Memristor Computing for Neuromorphic Systems
por: Min, Kyeong-Sik, et al.
Publicado: (2021) -
Robust Memristor Networks for Neuromorphic Computation Applications
por: Hajtó, Dániel, et al.
Publicado: (2019)