Cargando…
Parallel Genetic Algorithms’ Implementation Using a Scalable Concurrent Operation in Python †
This paper presents an implementation of the parallelization of genetic algorithms. Three models of parallelized genetic algorithms are presented, namely the Master–Slave genetic algorithm, the Coarse-Grained genetic algorithm, and the Fine-Grained genetic algorithm. Furthermore, these models are co...
Autores principales: | Skorpil, Vladislav, Oujezsky, Vaclav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951184/ https://www.ncbi.nlm.nih.gov/pubmed/35336561 http://dx.doi.org/10.3390/s22062389 |
Ejemplares similares
-
Mastering concurrency in Python: create faster programs using concurrency, asynchronous, multithreading, and parallel programming
por: Nguyen, Quan
Publicado: (2018) -
Hands-On Genetic Algorithms with Python
por: Wirsansky, Eyal
Publicado: (2020) -
Python parallel programming cookbook: master efficient parallel programming to build powerful applications using Python
por: Zaccone, Giancarlo
Publicado: (2015) -
Combining algorithms to predict bacterial protein sub-cellular location: Parallel versus concurrent implementations
por: Taylor, Paul D, et al.
Publicado: (2006) -
Python algorithms: mastering basic algorithms in the Python language
por: Hetland, Magnus Lie
Publicado: (2014)