Cargando…
Acacia nilotica Pods’ Extract Assisted-Hydrothermal Synthesis and Characterization of ZnO-CuO Nanocomposites
This work represents a novel combination between Acacia nilotica pods’ extract and the hydrothermal method to prepare nanoparticles of pure zinc oxide and pure copper oxide and nanocomposites of both oxides in different ratios. Five samples were prepared with different ratios of zinc oxide and coppe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951223/ https://www.ncbi.nlm.nih.gov/pubmed/35329744 http://dx.doi.org/10.3390/ma15062291 |
Sumario: | This work represents a novel combination between Acacia nilotica pods’ extract and the hydrothermal method to prepare nanoparticles of pure zinc oxide and pure copper oxide and nanocomposites of both oxides in different ratios. Five samples were prepared with different ratios of zinc oxide and copper oxide; 100% ZnO (ZC0), 75% ZnO: 25% CuO (ZC25), 50% ZnO: 50% CuO (ZC50), 25% ZnO: 75% CuO (ZC75), and 100% CuO (ZC100). Several techniques have been applied to characterize the prepared powders as FTIR, XRD, SEM, and TEM. The XRD results confirm the formation of the hexagonal wurtzite phase of zinc oxide and the monoclinic tenorite phase of copper oxide. The microscopy results show the formation of a heterostructure of nanocomposites with an average particle size of 13–27 nm. |
---|