Cargando…
Effective Macrosomia Prediction Using Random Forest Algorithm
(1) Background: Macrosomia is prevalent in China and worldwide. The current method of predicting macrosomia is ultrasonography. We aimed to develop new predictive models for recognizing macrosomia using a random forest model to improve the sensitivity and specificity of macrosomia prediction; (2) Me...
Autores principales: | Wang, Fangyi, Wang, Yongchao, Ji, Xiaokang, Wang, Zhiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951305/ https://www.ncbi.nlm.nih.gov/pubmed/35328934 http://dx.doi.org/10.3390/ijerph19063245 |
Ejemplares similares
-
Impact of Isolation measures on pregnancy outcome during the COVID-19 pandemic
por: Tao, Yu, et al.
Publicado: (2023) -
Biomarkers for Macrosomia Prediction in Pregnancies Affected by Diabetes
por: Nahavandi, Sofia, et al.
Publicado: (2018) -
Prediction of PKCθ Inhibitory Activity Using the Random Forest Algorithm
por: Hao, Ming, et al.
Publicado: (2010) -
Ensemble Learning to Improve the Prediction of Fetal Macrosomia and Large-for-Gestational Age
por: Ye, Shangyuan, et al.
Publicado: (2020) -
Factors associated with fetal macrosomia
por: Agudelo-Espitia, Vanessa, et al.
Publicado: (2019)