Cargando…
The Effect of Signal Duration on the Classification of Heart Sounds: A Deep Learning Approach
Deep learning techniques are the future trend for designing heart sound classification methods, making conventional heart sound segmentation dispensable. However, despite using fixed signal duration for training, no study has assessed its effect on the final performance in detail. Therefore, this st...
Autores principales: | Bao, Xinqi, Xu, Yujia, Kamavuako, Ernest Nlandu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951308/ https://www.ncbi.nlm.nih.gov/pubmed/35336432 http://dx.doi.org/10.3390/s22062261 |
Ejemplares similares
-
Estimation of the Respiratory Rate from Localised ECG at Different Auscultation Sites
por: Bao, Xinqi, et al.
Publicado: (2020) -
Hammerstein–Wiener Multimodel Approach for Fast and Efficient Muscle Force Estimation from EMG Signals
por: Chihi, Ines, et al.
Publicado: (2022) -
Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques
por: Zia ur Rehman, Muhammad, et al.
Publicado: (2018) -
Heartbeat Sound Signal Classification Using Deep Learning
por: Raza, Ali, et al.
Publicado: (2019) -
Deep Learning Methods for Heart Sounds Classification: A Systematic Review
por: Chen, Wei, et al.
Publicado: (2021)