Cargando…

Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer

Breast cancer is classified into four major molecular subtypes, and is considered a heterogenous disease. The risk profiles and treatment of breast cancer differ according to these subtypes. Early detection dramatically improves the prospects of successful treatment, resulting in a reduction in over...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, Bárbara, Vale, Nuno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951384/
https://www.ncbi.nlm.nih.gov/pubmed/35328602
http://dx.doi.org/10.3390/ijms23063181
Descripción
Sumario:Breast cancer is classified into four major molecular subtypes, and is considered a heterogenous disease. The risk profiles and treatment of breast cancer differ according to these subtypes. Early detection dramatically improves the prospects of successful treatment, resulting in a reduction in overall mortality rates. However, almost 30% of women primarily diagnosed with the early-stage disease will eventually develop metastasis or resistance to chemotherapies. Immunotherapies are among the most promising cancer treatment options; however, long-term clinical benefit has only been observed in a small subset of responding patients. The current strategies for diagnosis and treatment rely heavily on histopathological examination and molecular diagnosis, disregarding the tumor microenvironment and microbiome involving cancer cells. In this review, we aim to praise the use of pharmacogenomics and pharmacomicrobiomics as a strategy to identify potential biomarkers for guiding and monitoring therapy in real-time. The finding of these biomarkers can be performed by studying the metabolism of drugs, more specifically, immunometabolism, and its relationship with the microbiome, without neglecting the information provided by genetics. A larger understanding of cancer biology has the potential to improve patient care, enable clinical decisions, and deliver personalized medicine.