Cargando…

Void Content Determination of Carbon Fiber Reinforced Polymers: A Comparison between Destructive and Non-Destructive Methods

The properties of composite materials are highly dependent on the fiber and matrix fraction and on the porosity resulting from micro voids. This paper addresses void content characterization and the constituent content of composite materials by resorting to a comparison of destructive and non-destru...

Descripción completa

Detalles Bibliográficos
Autores principales: Elkolali, Moustafa, Nogueira, Liebert Parreiras, Rønning, Per Ola, Alcocer, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951427/
https://www.ncbi.nlm.nih.gov/pubmed/35335544
http://dx.doi.org/10.3390/polym14061212
Descripción
Sumario:The properties of composite materials are highly dependent on the fiber and matrix fraction and on the porosity resulting from micro voids. This paper addresses void content characterization and the constituent content of composite materials by resorting to a comparison of destructive and non-destructive methods. The work presents the detailed procedures of two destructive methods, using acid digestion of epoxy resins matrices, and compares their processes. It also presents the results of a non-destructive method, by means of Micro Computed Tomography (MicroCT). The results of both destructive and non-destructive methods are compared, and a recommendation is made based on the application and the type of composite being analyzed. The MicroCT showed better and more consistent results in detecting voids in the material, while the acid digestion tests provided better results about the fiber and matrix percentage. Exported results from the MicroCT scanning with actual locations of voids were used in numerical analysis, to examine the feasibility of using them, whether by developing models that map damage in the proximity of the void, or by developing models that predict the properties of the entire material with respect to the content, shape, and distribution in the material.