Cargando…

Reclassification of Enterobacter sp. FY-07 as Kosakonia oryzendophytica FY-07 and Its Potential to Promote Plant Growth

Precise classification of bacteria facilitates prediction of their ecological niche. The genus Enterobacter includes pathogens of plants and animals but also beneficial bacteria that may require reclassification. Here, we propose reclassification of Enterobacter FY-07 (FY-07), a strain that has many...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Ge, Zhang, Yan, Niu, Shaofang, Chen, Yu, Wang, Shaojing, Anwar, Nusratgul, Chen, Shuai, Li, Guoqiang, Ma, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951479/
https://www.ncbi.nlm.nih.gov/pubmed/35336150
http://dx.doi.org/10.3390/microorganisms10030575
Descripción
Sumario:Precise classification of bacteria facilitates prediction of their ecological niche. The genus Enterobacter includes pathogens of plants and animals but also beneficial bacteria that may require reclassification. Here, we propose reclassification of Enterobacter FY-07 (FY-07), a strain that has many plant-growth-promoting traits and produces bacterial cellulose (BC), to the Kosakonia genera. To re-examine the taxonomic position of FY-07, a polyphasic approach including 16S rRNA gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, determination of DNA G + C content, average nucleotide identity based on BLAST, in silico DNA–DNA hybridization and analysis of phenotypic features was applied. This polyphasic analysis suggested that Enterobacter sp. FY-07 should be reclassified as Kosakonia oryzendophytica FY-07. In addition, the potential of FY-07 to promote plant growth was also investigated by detecting related traits and the colonization of FY-07 in rice roots.