Cargando…
Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer
The current exploration focuses on the impact of homogeneous and heterogeneous chemical reactions on titanium dioxide-ethylene glycol (EG)-based nanoliquid flow over a rotating disk with thermal radiation. In this paper, a horizontal uniform magnetic field is used to regularise the flow field produc...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951526/ https://www.ncbi.nlm.nih.gov/pubmed/35335813 http://dx.doi.org/10.3390/nano12061000 |
_version_ | 1784675409353244672 |
---|---|
author | Wang, Fuzhang Kumar, Rangaswamy Naveen Prasannakumara, Ballajja C. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Galal, Ahmed M. |
author_facet | Wang, Fuzhang Kumar, Rangaswamy Naveen Prasannakumara, Ballajja C. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Galal, Ahmed M. |
author_sort | Wang, Fuzhang |
collection | PubMed |
description | The current exploration focuses on the impact of homogeneous and heterogeneous chemical reactions on titanium dioxide-ethylene glycol (EG)-based nanoliquid flow over a rotating disk with thermal radiation. In this paper, a horizontal uniform magnetic field is used to regularise the flow field produced by a rotating disk. Further, we conduct a comparative study on fluid flow with and without aggregation. Suitable transformations are used to convert the governing partial differential equations (PDEs) into ordinary differential equations (ODEs). Later, the attained system is solved numerically by means of the shooting method in conjunction with the Runge–Kutta–Fehlberg fourth-fifth-order method (RKF-45). The outcome reveals that the fluid flow without nanoparticle aggregation shows enhanced heat transport than for augmented values of melting parameter. Furthermore, for augmented values of strength of homogeneous and heterogeneous reaction parameters, the mass transfer is greater in fluid flow with aggregation conditions. |
format | Online Article Text |
id | pubmed-8951526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89515262022-03-26 Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer Wang, Fuzhang Kumar, Rangaswamy Naveen Prasannakumara, Ballajja C. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Galal, Ahmed M. Nanomaterials (Basel) Article The current exploration focuses on the impact of homogeneous and heterogeneous chemical reactions on titanium dioxide-ethylene glycol (EG)-based nanoliquid flow over a rotating disk with thermal radiation. In this paper, a horizontal uniform magnetic field is used to regularise the flow field produced by a rotating disk. Further, we conduct a comparative study on fluid flow with and without aggregation. Suitable transformations are used to convert the governing partial differential equations (PDEs) into ordinary differential equations (ODEs). Later, the attained system is solved numerically by means of the shooting method in conjunction with the Runge–Kutta–Fehlberg fourth-fifth-order method (RKF-45). The outcome reveals that the fluid flow without nanoparticle aggregation shows enhanced heat transport than for augmented values of melting parameter. Furthermore, for augmented values of strength of homogeneous and heterogeneous reaction parameters, the mass transfer is greater in fluid flow with aggregation conditions. MDPI 2022-03-18 /pmc/articles/PMC8951526/ /pubmed/35335813 http://dx.doi.org/10.3390/nano12061000 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Fuzhang Kumar, Rangaswamy Naveen Prasannakumara, Ballajja C. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Galal, Ahmed M. Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer |
title | Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer |
title_full | Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer |
title_fullStr | Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer |
title_full_unstemmed | Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer |
title_short | Aspects of Uniform Horizontal Magnetic Field and Nanoparticle Aggregation in the Flow of Nanofluid with Melting Heat Transfer |
title_sort | aspects of uniform horizontal magnetic field and nanoparticle aggregation in the flow of nanofluid with melting heat transfer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951526/ https://www.ncbi.nlm.nih.gov/pubmed/35335813 http://dx.doi.org/10.3390/nano12061000 |
work_keys_str_mv | AT wangfuzhang aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT kumarrangaswamynaveen aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT prasannakumaraballajjac aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT khanumair aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT zaibaurang aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT abdelatyabdelhaleem aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT yahiaibrahims aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT alqahtanimohammeds aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer AT galalahmedm aspectsofuniformhorizontalmagneticfieldandnanoparticleaggregationintheflowofnanofluidwithmeltingheattransfer |