Cargando…

Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China

Promoting technological advancements and energy transitions in electricity generation are crucial for achieving carbon reduction goals. Some studies have examined the effectiveness of these measures by analysing the driving forces of “aggregate carbon intensity” (ACI) change. However, only a few stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Shiping, Liu, Qianqian, Zhang, Wenzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951601/
https://www.ncbi.nlm.nih.gov/pubmed/35329153
http://dx.doi.org/10.3390/ijerph19063471
Descripción
Sumario:Promoting technological advancements and energy transitions in electricity generation are crucial for achieving carbon reduction goals. Some studies have examined the effectiveness of these measures by analysing the driving forces of “aggregate carbon intensity” (ACI) change. However, only a few studies have considered the effect of the installed capacity mix and capacity factor. Moreover, such analysis has never been applied at China’s provincial level after 2015. To alleviate this gap, our study applied a temporal and multi-regional spatial IDA-LMDI model to analyse the driving factors of ACI changes and disparities among the provinces of China from 2005 to 2019. The model notably includes the effects of the installed capacity mix, thermal capacity factor, and overall capacity factor. The analysis revealed that the decline in China’s ACI was diminished after 2015, while an ACI rebound was identified in five provinces. The changes in the ACI from 2015 to 2019 were mainly driven by the effect of the installed capacity mix rather than by the thermal efficiency and thermal capacity factor. The overall capacity factor was the only factor with a negative impact on the ACI change. We also found that its combined effect with the thermal capacity factor on increasing ACI can offset the effect of the installed capacity mix by reducing the ACI in provinces with significant additions of renewable energy installed capacity. The analysis of the influencing factors on the provincial ACI differences revealed that the share of hydropower installed capacity was significant. Moreover, the thermal efficiency and thermal capacity factor both played key roles in the ACI disparities in northeast, northwest, and central China. Overall, this study paves the way for data-driven measures of China’s carbon peak and carbon neutrality goals by improving the capacity factor of wind and solar power, leveraging the critical impact of hydropower, and narrowing the differences in the thermal power sector among provinces.