Cargando…

The heat is on: a simple method to increase genome editing efficiency in plants

BACKGROUND: Precision genome mutagenesis using CRISPR/Cas has become the standard method to generate mutant plant lines. Several improvements have been made to increase mutagenesis efficiency, either through vector optimisation or the application of heat stress. RESULTS: Here, we present a simplifie...

Descripción completa

Detalles Bibliográficos
Autores principales: Blomme, Jonas, Develtere, Ward, Köse, Ayse, Arraiza Ribera, Júlia, Brugmans, Christophe, Jaraba-Wallace, Jessica, Decaestecker, Ward, Rombaut, Debbie, Baekelandt, Alexandra, Daniel Fernández Fernández, Álvaro, Van Breusegem, Frank, Inzé, Dirk, Jacobs, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951696/
https://www.ncbi.nlm.nih.gov/pubmed/35331142
http://dx.doi.org/10.1186/s12870-022-03519-7
_version_ 1784675450518241280
author Blomme, Jonas
Develtere, Ward
Köse, Ayse
Arraiza Ribera, Júlia
Brugmans, Christophe
Jaraba-Wallace, Jessica
Decaestecker, Ward
Rombaut, Debbie
Baekelandt, Alexandra
Daniel Fernández Fernández, Álvaro
Van Breusegem, Frank
Inzé, Dirk
Jacobs, Thomas
author_facet Blomme, Jonas
Develtere, Ward
Köse, Ayse
Arraiza Ribera, Júlia
Brugmans, Christophe
Jaraba-Wallace, Jessica
Decaestecker, Ward
Rombaut, Debbie
Baekelandt, Alexandra
Daniel Fernández Fernández, Álvaro
Van Breusegem, Frank
Inzé, Dirk
Jacobs, Thomas
author_sort Blomme, Jonas
collection PubMed
description BACKGROUND: Precision genome mutagenesis using CRISPR/Cas has become the standard method to generate mutant plant lines. Several improvements have been made to increase mutagenesis efficiency, either through vector optimisation or the application of heat stress. RESULTS: Here, we present a simplified heat stress assay that can be completed in six days using commonly-available laboratory equipment. We show that three heat shocks (3xHS) efficiently increases indel efficiency of LbCas12a and Cas9, irrespective of the target sequence or the promoter used to express the nuclease. The generated indels are primarily somatic, but for three out of five targets we demonstrate that up to 25% more biallelic mutations are transmitted to the progeny when heat is applied compared to non-heat controls. We also applied our heat treatment to lines containing CRISPR base editors and observed a 22-27% increase in the percentage of C-to-T base editing. Furthermore, we test the effect of 3xHS on generating large deletions and a homologous recombination reporter. Interestingly, we observed no positive effect of 3xHS treatment on either approach using our conditions. CONCLUSIONS: Together, our experiments show that heat treatment is consistently effective at increasing the number of somatic mutations using many CRISPR approaches in plants and in some cases can increase the recovery of mutant progeny. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03519-7.
format Online
Article
Text
id pubmed-8951696
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-89516962022-03-26 The heat is on: a simple method to increase genome editing efficiency in plants Blomme, Jonas Develtere, Ward Köse, Ayse Arraiza Ribera, Júlia Brugmans, Christophe Jaraba-Wallace, Jessica Decaestecker, Ward Rombaut, Debbie Baekelandt, Alexandra Daniel Fernández Fernández, Álvaro Van Breusegem, Frank Inzé, Dirk Jacobs, Thomas BMC Plant Biol Research BACKGROUND: Precision genome mutagenesis using CRISPR/Cas has become the standard method to generate mutant plant lines. Several improvements have been made to increase mutagenesis efficiency, either through vector optimisation or the application of heat stress. RESULTS: Here, we present a simplified heat stress assay that can be completed in six days using commonly-available laboratory equipment. We show that three heat shocks (3xHS) efficiently increases indel efficiency of LbCas12a and Cas9, irrespective of the target sequence or the promoter used to express the nuclease. The generated indels are primarily somatic, but for three out of five targets we demonstrate that up to 25% more biallelic mutations are transmitted to the progeny when heat is applied compared to non-heat controls. We also applied our heat treatment to lines containing CRISPR base editors and observed a 22-27% increase in the percentage of C-to-T base editing. Furthermore, we test the effect of 3xHS on generating large deletions and a homologous recombination reporter. Interestingly, we observed no positive effect of 3xHS treatment on either approach using our conditions. CONCLUSIONS: Together, our experiments show that heat treatment is consistently effective at increasing the number of somatic mutations using many CRISPR approaches in plants and in some cases can increase the recovery of mutant progeny. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03519-7. BioMed Central 2022-03-24 /pmc/articles/PMC8951696/ /pubmed/35331142 http://dx.doi.org/10.1186/s12870-022-03519-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Blomme, Jonas
Develtere, Ward
Köse, Ayse
Arraiza Ribera, Júlia
Brugmans, Christophe
Jaraba-Wallace, Jessica
Decaestecker, Ward
Rombaut, Debbie
Baekelandt, Alexandra
Daniel Fernández Fernández, Álvaro
Van Breusegem, Frank
Inzé, Dirk
Jacobs, Thomas
The heat is on: a simple method to increase genome editing efficiency in plants
title The heat is on: a simple method to increase genome editing efficiency in plants
title_full The heat is on: a simple method to increase genome editing efficiency in plants
title_fullStr The heat is on: a simple method to increase genome editing efficiency in plants
title_full_unstemmed The heat is on: a simple method to increase genome editing efficiency in plants
title_short The heat is on: a simple method to increase genome editing efficiency in plants
title_sort heat is on: a simple method to increase genome editing efficiency in plants
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951696/
https://www.ncbi.nlm.nih.gov/pubmed/35331142
http://dx.doi.org/10.1186/s12870-022-03519-7
work_keys_str_mv AT blommejonas theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT develtereward theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT koseayse theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT arraizariberajulia theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT brugmanschristophe theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT jarabawallacejessica theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT decaesteckerward theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT rombautdebbie theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT baekelandtalexandra theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT danielfernandezfernandezalvaro theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT vanbreusegemfrank theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT inzedirk theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT jacobsthomas theheatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT blommejonas heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT develtereward heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT koseayse heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT arraizariberajulia heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT brugmanschristophe heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT jarabawallacejessica heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT decaesteckerward heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT rombautdebbie heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT baekelandtalexandra heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT danielfernandezfernandezalvaro heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT vanbreusegemfrank heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT inzedirk heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants
AT jacobsthomas heatisonasimplemethodtoincreasegenomeeditingefficiencyinplants