Cargando…
Layered Antibiofouling Composite Membrane for Quenching Bacterial Signaling
Bacterial quorum quenching (QQ) media with various structures (e.g., bead, cylinder, hollow cylinder, and sheet), which impart biofouling mitigation in membrane bioreactors (MBRs), have been reported. However, there has been a continuous demand for membranes with QQ capability. Thus, herein, we repo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951743/ https://www.ncbi.nlm.nih.gov/pubmed/35323771 http://dx.doi.org/10.3390/membranes12030296 |
Sumario: | Bacterial quorum quenching (QQ) media with various structures (e.g., bead, cylinder, hollow cylinder, and sheet), which impart biofouling mitigation in membrane bioreactors (MBRs), have been reported. However, there has been a continuous demand for membranes with QQ capability. Thus, herein, we report a novel double-layered membrane comprising an outer layer containing a QQ bacterium (BH4 strain) on the polysulfone hollow fiber membrane. The double-layered composite membrane significantly inhibits biofilm formation (i.e., the biofilm density decreases by ~58%), biopolymer accumulation (e.g., polysaccharide), and signal molecule concentration (which decreases by ~38%) on the membrane surface. The transmembrane pressure buildup to 50 kPa of the BH4-embedded membrane (17.8 h ± 1.1) is delayed by more than thrice (p < 0.05) of the control with no BH4 in the membrane’s outer layer (5.5 h ± 0.8). This finding provides new insight into fabricating antibiofouling membranes with a self-regulating property against biofilm growth. |
---|