Cargando…
Perplexity: evaluating transcript abundance estimation in the absence of ground truth
BACKGROUND: There has been rapid development of probabilistic models and inference methods for transcript abundance estimation from RNA-seq data. These models aim to accurately estimate transcript-level abundances, to account for different biases in the measurement process, and even to assess uncert...
Autores principales: | Fan, Jason, Chan, Skylar, Patro, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951746/ https://www.ncbi.nlm.nih.gov/pubmed/35331283 http://dx.doi.org/10.1186/s13015-022-00214-y |
Ejemplares similares
-
SEG: Segmentation Evaluation in absence of Ground truth labels
por: Sims, Zachary, et al.
Publicado: (2023) -
Improved data-driven likelihood factorizations for transcript abundance estimation
por: Zakeri, Mohsen, et al.
Publicado: (2017) -
Tryggo: Old norse for truth: The real truth about ground truth: New insights into the challenges of generating ground truth maps for WSI CAD algorithm evaluation
por: Hipp, Jason D., et al.
Publicado: (2012) -
Alignment and mapping methodology influence transcript abundance estimation
por: Srivastava, Avi, et al.
Publicado: (2020) -
Ground Truth
por: Garrity, George M.
Publicado: (2009)