Cargando…

Use of the FMR1 Gene Methylation Status to Assess the X-Chromosome Inactivation Pattern: A Stepwise Analysis

X-chromosome inactivation (XCI) is a developmental process to compensate the imbalance in the dosage of X-chromosomal genes in females. A skewing of the XCI pattern may suggest a carrier status for an X-linked disease or explain the presence of a severe phenotype. In these cases, it is important to...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodrigues, Bárbara, Gonçalves, Ana, Sousa, Vanessa, Maia, Nuno, Marques, Isabel, Vale-Fernandes, Emídio, Santos, Rosário, Nogueira, António J. A., Jorge, Paula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951761/
https://www.ncbi.nlm.nih.gov/pubmed/35327973
http://dx.doi.org/10.3390/genes13030419
Descripción
Sumario:X-chromosome inactivation (XCI) is a developmental process to compensate the imbalance in the dosage of X-chromosomal genes in females. A skewing of the XCI pattern may suggest a carrier status for an X-linked disease or explain the presence of a severe phenotype. In these cases, it is important to determine the XCI pattern, conventionally using the gold standard Human Androgen-Receptor Assay (HUMARA), based on the analysis of the methylation status at a polymorphic CAG region in the first exon of the human androgen receptor gene (AR). The aim of this study was to evaluate whether the methylation status of the fragile mental retardation protein translational regulator gene (FMR1) can provide an XCI pattern similar to that obtained by HUMARA. A set of 48 female carriers of FMR1 gene normal-sized alleles was examined using two assays: HUMARA and a FMR1 methylation PCR (mPCR). Ranges were defined to establish the XCI pattern using the methylation pattern of the FMR1 gene by mPCR. Overall, a 77% concordance of the XCI patterns was obtained between the two assays, which led us to propose a set of key points and a stepwise analysis towards obtaining an accurate result for the XCI pattern and to minimize the underlying pitfalls.