Cargando…

Fine Texture Detection Based on a Solid–Liquid Composite Flexible Tactile Sensor Array

Surface texture information plays an important role in the cognition and manipulation of an object. Vision and touch are the two main methods for extracting an object’s surface texture information. However, vision is often limited since the viewing angle is uncertain during manipulation. In this art...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Weiting, Zhang, Guoshi, Zhan, Binpeng, Hu, Liang, Liu, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951775/
https://www.ncbi.nlm.nih.gov/pubmed/35334732
http://dx.doi.org/10.3390/mi13030440
Descripción
Sumario:Surface texture information plays an important role in the cognition and manipulation of an object. Vision and touch are the two main methods for extracting an object’s surface texture information. However, vision is often limited since the viewing angle is uncertain during manipulation. In this article, we propose a fine surface texture detection method based on a stochastic resonance algorithm through a novel solid–liquid composite flexible tactile sensor array. A thin flexible layer and solid–liquid composite conduction structure on the sensor effectively reduce the attenuation of the contact force and enhance the sensitivity of the sensor. A series of ridge texture samples with different heights (0.9, 4, 10 μm), different widths (0.3, 0.5, 0.7, 1 mm), but the same spatial period (2 mm) of ridges were used in the experiment. The experimental results prove that the stochastic resonance algorithm can significantly improve the signal characteristic of the output signal of the sensor. The sensor has the capability to detect fine ridge texture information. The mean relative error of the estimation for the spatial period was 1.085%, and the ridge width and ridge height, respectively, have a monotonic mapping relationship with the corresponding model output parameters. The sensing capability to sense a fine texture of tactile senor surpasses the limit of human fingers.