Cargando…

Expression of FMRpolyG in Peripheral Blood Mononuclear Cells of Women with Fragile X Mental Retardation 1 Gene Premutation

Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism and is caused by the expansion of the CGG repeat in the 5′UTR of Fragile X Mental Retardation 1 (FMR1). Approximately 20% of women carrying an FMR1 premutation (PM) alle...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Xuan Phuoc, Vilkaite, Adriana, Messmer, Birgitta, Dietrich, Jens E., Hinderhofer, Katrin, Schäkel, Knut, Strowitzki, Thomas, Rehnitz, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951797/
https://www.ncbi.nlm.nih.gov/pubmed/35328005
http://dx.doi.org/10.3390/genes13030451
Descripción
Sumario:Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism and is caused by the expansion of the CGG repeat in the 5′UTR of Fragile X Mental Retardation 1 (FMR1). Approximately 20% of women carrying an FMR1 premutation (PM) allele (55–200 CGG repeat) develop FXPOI. Repeat Associated Non-AUG (RAN)-translation dependent on the variable CGG-repeat length is thought to cause FXPOI, due to the production of a polyglycine-containing FMR1 protein, FMRpolyG. Peripheral blood monocyte cells (PBMCs) and granulosa cells (GCs) were collected to detect FMRpolyG and its cell type-specific expression in FMR1 PM carriers by immunofluorescence staining (IF), Western blotting (WB), and flow cytometric analysis (FACS). For the first time, FMRpolyG aggregates were detected as ubiquitin-positive inclusions in PBMCs from PM carriers, whereas only a weak signal without inclusions was detected in the controls. The expression pattern of FMRpolyG in GCs was comparable to that in the lymphocytes. We detected FMRpolyG as a 15- to 25-kDa protein in the PBMCs from two FMR1 PM carriers, with 124 and 81 CGG repeats. Flow cytometric analysis revealed that FMRpolyG was significantly higher in the T cells from PM carriers than in those from non-PM carriers. The detection of FMRpolyG aggregates in the peripheral blood and granulosa cells of PM carriers suggests that it may have a toxic potential and an immunological role in ovarian damage in the development of FXPOI.