Cargando…

Plasma Metabolite Profiles Following Consumption of Animal Protein and Soybean-Based Diet in Hypercholesterolemic Postmenopausal Women

Subjective reporting of food intake can be unreliable. No objective method is available to distinguish between diets differing in protein type. To address this gap, a secondary analysis of a randomized controlled cross-over feeding trial was conducted. Assessed were fasting plasma metabolite profile...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Neil K., Matthan, Nirupa R., Matuszek, Gregory, Lichtenstein, Alice H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952012/
https://www.ncbi.nlm.nih.gov/pubmed/35323651
http://dx.doi.org/10.3390/metabo12030209
Descripción
Sumario:Subjective reporting of food intake can be unreliable. No objective method is available to distinguish between diets differing in protein type. To address this gap, a secondary analysis of a randomized controlled cross-over feeding trial was conducted. Assessed were fasting plasma metabolite profiles and their associations with cardiometabolic risk factors (CMRFs). Hypercholesterolemic post-menopausal women (N = 11) were provided with diets containing predominantly animal protein (AP) and soy protein (SP). Untargeted metabolomics were used to determine the plasma metabolite profiles at the end of each diet phase. Concentrations of identified metabolites (N = 829) were compared using paired t-tests adjusted for false discovery rate, partial least square-discrimination analysis (PLS-DA) and receiver operating characteristics (ROC). Among the identified metabolites, 58 differed significantly between the AP and SP diets; the majority were phospholipids (n = 36), then amino acids (n = 10), xenobiotics (n = 7), vitamin/vitamin-related (n = 3) and lipids (n = 2). Of the top 10 metabolites, amino acid-derived metabolites, phospholipids and xenobiotics comprised the main categories differing due to dietary protein type. ROC curves confirmed that the top 10 metabolites were potential discriminating biomarkers for AP- and SP-rich diets. In conclusion, amino acid-derived metabolites, phosphatidylethanolamine-derived metabolites and isoflavones were identified as potential metabolite biomarkers distinguishing between dietary protein type.