Cargando…
Fabrication of Multiple Parallel Microchannels in a Single Microgroove via the Heating Assisted MIMIC Technique
For the first time, multiple parallel microchannels in a single microgroove have been fabricated by the heating-assisted micromolding in capillaries technique (HAMIMIC). Microchannel development, cross-sectional shape, and length were all explored in depth. The factors affecting the cross-sectional...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952235/ https://www.ncbi.nlm.nih.gov/pubmed/35334655 http://dx.doi.org/10.3390/mi13030364 |
Sumario: | For the first time, multiple parallel microchannels in a single microgroove have been fabricated by the heating-assisted micromolding in capillaries technique (HAMIMIC). Microchannel development, cross-sectional shape, and length were all explored in depth. The factors affecting the cross-sectional shape and length of the double-microchannel were also discussed. Finally, a special-shaped PDMS guiding mold was designed to control the cross-sectional shape and length of multiple parallel microchannels for controlled growth. The HAMIMIC technique provides a low-cost, straightforward, and repeatable way to create multiple parallel microchannels in a single microgroove, and will promote the progress of bifurcated vessels and thrombus vessels preparation technology. |
---|