Cargando…

Short-Term Snow Removal Alters Fungal but Not Bacterial Beta Diversity and Structure during the Spring Snowmelt Period in a Meadow Steppe of China

Global climate change is altering the amounts of ice and snow in winter, and this could be a major driver of soil microbial processes. However, it is not known how bacterial and fungal communities will respond to changes in the snow cover. We conducted a snow manipulation experiment to study the eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hengkang, Liu, Nan, Zhang, Yingjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952243/
https://www.ncbi.nlm.nih.gov/pubmed/35330236
http://dx.doi.org/10.3390/jof8030234
Descripción
Sumario:Global climate change is altering the amounts of ice and snow in winter, and this could be a major driver of soil microbial processes. However, it is not known how bacterial and fungal communities will respond to changes in the snow cover. We conducted a snow manipulation experiment to study the effects of snow removal on the diversity and composition of soil bacterial and fungal communities. A snow manipulation experiment was carried out on the meadow steppe in Hulunbuir, Inner Mongolia, China, during the winter period October 2019–March 2020. Soil samples were collected from the topsoil (0–10 cm) in mid-March 2020 (spring snowmelt period). Snow removal significantly reduced soil moisture and soil ammonium concentration. Lower snow cover also significantly changed the fungal community structure and beta diversity. Snow removal did not affect the bacterial community, indicating that fungal communities are more sensitive to snow exclusion than bacterial communities. The relative importance analysis (using the Lindeman–Merenda–Gold method) showed that available nitrogen (AN), soil water content (SWC), total organic carbon (TOC), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) together explained 94.59% of the variation in soil fungal beta diversity, where AN was identified as the most important predictor. These finding provide insights into potential impacts of climate warming and associated reduced snow cover on soil microbial communities and processes.