Cargando…
Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water
Amino acid complexes of zirconia represent an entirely new class of materials that were synthesized and studied for the first time for the decontamination of fluoride ion containing aqueous solutions. Glutamic and aspartic acid complexes of zirconia assembled with thin carbon (stacked graphene oxide...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952250/ https://www.ncbi.nlm.nih.gov/pubmed/35329329 http://dx.doi.org/10.3390/ijerph19063640 |
_version_ | 1784675568732602368 |
---|---|
author | González-Aguiñaga, Efrén Pérez-Tavares, José Antonio Patakfalvi, Rita Szabó, Tamás Illés, Erzsébet Pérez Ladrón de Guevara, Héctor Cardoso-Avila, Pablo Eduardo Castañeda-Contreras, Jesús Saavedra Arroyo, Quetzalcoatl Enrique |
author_facet | González-Aguiñaga, Efrén Pérez-Tavares, José Antonio Patakfalvi, Rita Szabó, Tamás Illés, Erzsébet Pérez Ladrón de Guevara, Héctor Cardoso-Avila, Pablo Eduardo Castañeda-Contreras, Jesús Saavedra Arroyo, Quetzalcoatl Enrique |
author_sort | González-Aguiñaga, Efrén |
collection | PubMed |
description | Amino acid complexes of zirconia represent an entirely new class of materials that were synthesized and studied for the first time for the decontamination of fluoride ion containing aqueous solutions. Glutamic and aspartic acid complexes of zirconia assembled with thin carbon (stacked graphene oxide) platelets deriving from graphite oxide (GO) were synthesized by a two-step method to prepare adsorbents. The characterization of the complexes was carried out using infrared spectroscopy to determine the functional groups and the types of interaction between the composites and fluoride ions. To reveal the mechanisms and extent of adsorption, two types of batch adsorption measurements were performed: (i) varying equilibrium fluoride ion concentrations to construct adsorption isotherms at pH = 7 in the absence of added electrolytes and (ii) using fixed initial fluoride ion concentrations (10 mg/L) with a variation of either the pH or the concentration of a series of salts that potentially interfere with adsorption. The experimental adsorption isotherms were fitted by three different theoretical isotherm equations, and they are described most appropriately by the two-site Langmuir model for both adsorbents. The adsorption capacities of Zr-glutamic acid-graphite oxide and Zr-aspartic acid-graphite oxide are 105.3 and 101.0 mg/g, respectively. We found that two distinct binding modes are combined in the Zr-amino acid complexes: at low solution concentrations, F(−) ions are preferentially adsorbed by coordinating to the surface Zr species up to a capacity of ca. 10 mg/g. At higher concentrations, however, large amounts of fluoride ions may undergo anion exchange processes and physisorption may occur on the positively charged ammonium moieties of the interfacially bound amino acid molecules. The high adsorption capacity and affinity of the studied dicarboxylate-type amino acids demonstrate that amino acid complexes of zirconia are highly variable materials for the safe and efficient capture of strong Lewis base-type ions such as fluoride. |
format | Online Article Text |
id | pubmed-8952250 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89522502022-03-26 Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water González-Aguiñaga, Efrén Pérez-Tavares, José Antonio Patakfalvi, Rita Szabó, Tamás Illés, Erzsébet Pérez Ladrón de Guevara, Héctor Cardoso-Avila, Pablo Eduardo Castañeda-Contreras, Jesús Saavedra Arroyo, Quetzalcoatl Enrique Int J Environ Res Public Health Article Amino acid complexes of zirconia represent an entirely new class of materials that were synthesized and studied for the first time for the decontamination of fluoride ion containing aqueous solutions. Glutamic and aspartic acid complexes of zirconia assembled with thin carbon (stacked graphene oxide) platelets deriving from graphite oxide (GO) were synthesized by a two-step method to prepare adsorbents. The characterization of the complexes was carried out using infrared spectroscopy to determine the functional groups and the types of interaction between the composites and fluoride ions. To reveal the mechanisms and extent of adsorption, two types of batch adsorption measurements were performed: (i) varying equilibrium fluoride ion concentrations to construct adsorption isotherms at pH = 7 in the absence of added electrolytes and (ii) using fixed initial fluoride ion concentrations (10 mg/L) with a variation of either the pH or the concentration of a series of salts that potentially interfere with adsorption. The experimental adsorption isotherms were fitted by three different theoretical isotherm equations, and they are described most appropriately by the two-site Langmuir model for both adsorbents. The adsorption capacities of Zr-glutamic acid-graphite oxide and Zr-aspartic acid-graphite oxide are 105.3 and 101.0 mg/g, respectively. We found that two distinct binding modes are combined in the Zr-amino acid complexes: at low solution concentrations, F(−) ions are preferentially adsorbed by coordinating to the surface Zr species up to a capacity of ca. 10 mg/g. At higher concentrations, however, large amounts of fluoride ions may undergo anion exchange processes and physisorption may occur on the positively charged ammonium moieties of the interfacially bound amino acid molecules. The high adsorption capacity and affinity of the studied dicarboxylate-type amino acids demonstrate that amino acid complexes of zirconia are highly variable materials for the safe and efficient capture of strong Lewis base-type ions such as fluoride. MDPI 2022-03-18 /pmc/articles/PMC8952250/ /pubmed/35329329 http://dx.doi.org/10.3390/ijerph19063640 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article González-Aguiñaga, Efrén Pérez-Tavares, José Antonio Patakfalvi, Rita Szabó, Tamás Illés, Erzsébet Pérez Ladrón de Guevara, Héctor Cardoso-Avila, Pablo Eduardo Castañeda-Contreras, Jesús Saavedra Arroyo, Quetzalcoatl Enrique Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water |
title | Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water |
title_full | Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water |
title_fullStr | Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water |
title_full_unstemmed | Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water |
title_short | Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water |
title_sort | amino acid complexes of zirconium in a carbon composite for the efficient removal of fluoride ions from water |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952250/ https://www.ncbi.nlm.nih.gov/pubmed/35329329 http://dx.doi.org/10.3390/ijerph19063640 |
work_keys_str_mv | AT gonzalezaguinagaefren aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT pereztavaresjoseantonio aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT patakfalvirita aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT szabotamas aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT illeserzsebet aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT perezladrondeguevarahector aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT cardosoavilapabloeduardo aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT castanedacontrerasjesus aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater AT saavedraarroyoquetzalcoatlenrique aminoacidcomplexesofzirconiuminacarboncompositefortheefficientremovaloffluorideionsfromwater |