Cargando…
Alzheimer’s Disease Classification Accuracy is Improved by MRI Harmonization based on Attention-Guided Generative Adversarial Networks
Alzheimer’s disease (AD) accounts for 60% of dementia cases worldwide; patients with the disease typically suffer from irreversible memory loss and progressive decline in multiple cognitive domains. With brain imaging techniques such as magnetic resonance imaging (MRI), microscopic brain changes are...
Autores principales: | Sinha, Surabhi, Thomopoulos, Sophia I., Lam, Pradeep, Muir, Alexandra, Thompson, Paul M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952312/ https://www.ncbi.nlm.nih.gov/pubmed/35340753 http://dx.doi.org/10.1117/12.2606155 |
Ejemplares similares
-
Style transfer generative adversarial networks to harmonize multisite MRI to a single reference image to avoid overcorrection
por: Liu, Mengting, et al.
Publicado: (2023) -
Adversarial counterfactual augmentation: application in Alzheimer’s disease classification
por: Xia, Tian, et al.
Publicado: (2022) -
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
por: Li, Xingjian, et al.
Publicado: (2022) -
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021) -
Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification
por: Wang, Desheng, et al.
Publicado: (2023)