Cargando…
Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet
The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO(2)/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measur...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952379/ https://www.ncbi.nlm.nih.gov/pubmed/35335789 http://dx.doi.org/10.3390/nano12060977 |
_version_ | 1784675599653011456 |
---|---|
author | Yu, Yangyang Madhukesh, Javali K. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Wang, Fuzhang Galal, Ahmed M. |
author_facet | Yu, Yangyang Madhukesh, Javali K. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Wang, Fuzhang Galal, Ahmed M. |
author_sort | Yu, Yangyang |
collection | PubMed |
description | The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO(2)/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle aggregation. The nonlinear partial differential equations are transformed into a system of ordinary differential equations using appropriate similarity factors, and numerical research is carried out using the Runge-Kutta-Felhberg 4th/5th order and shooting technique. The obtained results show that improved values of the porous constraint will decline the velocity profile. Improvement in heat source/sink parameter directly affects the temperature profile. Thermophoretic parameter, bioconvection Peclet number, and Lewis number decrease the concentration and bioconvection profiles. Increases in the heat source/sink constraint and solid volume fraction will advance the rate of thermal dispersion. Nanoparticle with aggregation exhibits less impact in case of velocity profile, but shows a greater impact on temperature, concentration, and bioconvection profiles. |
format | Online Article Text |
id | pubmed-8952379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89523792022-03-26 Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet Yu, Yangyang Madhukesh, Javali K. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Wang, Fuzhang Galal, Ahmed M. Nanomaterials (Basel) Article The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO(2)/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle aggregation. The nonlinear partial differential equations are transformed into a system of ordinary differential equations using appropriate similarity factors, and numerical research is carried out using the Runge-Kutta-Felhberg 4th/5th order and shooting technique. The obtained results show that improved values of the porous constraint will decline the velocity profile. Improvement in heat source/sink parameter directly affects the temperature profile. Thermophoretic parameter, bioconvection Peclet number, and Lewis number decrease the concentration and bioconvection profiles. Increases in the heat source/sink constraint and solid volume fraction will advance the rate of thermal dispersion. Nanoparticle with aggregation exhibits less impact in case of velocity profile, but shows a greater impact on temperature, concentration, and bioconvection profiles. MDPI 2022-03-16 /pmc/articles/PMC8952379/ /pubmed/35335789 http://dx.doi.org/10.3390/nano12060977 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Yangyang Madhukesh, Javali K. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Wang, Fuzhang Galal, Ahmed M. Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet |
title | Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet |
title_full | Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet |
title_fullStr | Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet |
title_full_unstemmed | Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet |
title_short | Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet |
title_sort | nanoparticle aggregation and thermophoretic particle deposition process in the flow of micropolar nanofluid over a stretching sheet |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952379/ https://www.ncbi.nlm.nih.gov/pubmed/35335789 http://dx.doi.org/10.3390/nano12060977 |
work_keys_str_mv | AT yuyangyang nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT madhukeshjavalik nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT khanumair nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT zaibaurang nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT abdelatyabdelhaleem nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT yahiaibrahims nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT alqahtanimohammeds nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT wangfuzhang nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet AT galalahmedm nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet |