Cargando…

Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet

The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO(2)/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measur...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Yangyang, Madhukesh, Javali K., Khan, Umair, Zaib, Aurang, Abdel-Aty, Abdel-Haleem, Yahia, Ibrahim S., Alqahtani, Mohammed S., Wang, Fuzhang, Galal, Ahmed M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952379/
https://www.ncbi.nlm.nih.gov/pubmed/35335789
http://dx.doi.org/10.3390/nano12060977
_version_ 1784675599653011456
author Yu, Yangyang
Madhukesh, Javali K.
Khan, Umair
Zaib, Aurang
Abdel-Aty, Abdel-Haleem
Yahia, Ibrahim S.
Alqahtani, Mohammed S.
Wang, Fuzhang
Galal, Ahmed M.
author_facet Yu, Yangyang
Madhukesh, Javali K.
Khan, Umair
Zaib, Aurang
Abdel-Aty, Abdel-Haleem
Yahia, Ibrahim S.
Alqahtani, Mohammed S.
Wang, Fuzhang
Galal, Ahmed M.
author_sort Yu, Yangyang
collection PubMed
description The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO(2)/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle aggregation. The nonlinear partial differential equations are transformed into a system of ordinary differential equations using appropriate similarity factors, and numerical research is carried out using the Runge-Kutta-Felhberg 4th/5th order and shooting technique. The obtained results show that improved values of the porous constraint will decline the velocity profile. Improvement in heat source/sink parameter directly affects the temperature profile. Thermophoretic parameter, bioconvection Peclet number, and Lewis number decrease the concentration and bioconvection profiles. Increases in the heat source/sink constraint and solid volume fraction will advance the rate of thermal dispersion. Nanoparticle with aggregation exhibits less impact in case of velocity profile, but shows a greater impact on temperature, concentration, and bioconvection profiles.
format Online
Article
Text
id pubmed-8952379
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89523792022-03-26 Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet Yu, Yangyang Madhukesh, Javali K. Khan, Umair Zaib, Aurang Abdel-Aty, Abdel-Haleem Yahia, Ibrahim S. Alqahtani, Mohammed S. Wang, Fuzhang Galal, Ahmed M. Nanomaterials (Basel) Article The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO(2)/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle aggregation. The nonlinear partial differential equations are transformed into a system of ordinary differential equations using appropriate similarity factors, and numerical research is carried out using the Runge-Kutta-Felhberg 4th/5th order and shooting technique. The obtained results show that improved values of the porous constraint will decline the velocity profile. Improvement in heat source/sink parameter directly affects the temperature profile. Thermophoretic parameter, bioconvection Peclet number, and Lewis number decrease the concentration and bioconvection profiles. Increases in the heat source/sink constraint and solid volume fraction will advance the rate of thermal dispersion. Nanoparticle with aggregation exhibits less impact in case of velocity profile, but shows a greater impact on temperature, concentration, and bioconvection profiles. MDPI 2022-03-16 /pmc/articles/PMC8952379/ /pubmed/35335789 http://dx.doi.org/10.3390/nano12060977 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yu, Yangyang
Madhukesh, Javali K.
Khan, Umair
Zaib, Aurang
Abdel-Aty, Abdel-Haleem
Yahia, Ibrahim S.
Alqahtani, Mohammed S.
Wang, Fuzhang
Galal, Ahmed M.
Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet
title Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet
title_full Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet
title_fullStr Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet
title_full_unstemmed Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet
title_short Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet
title_sort nanoparticle aggregation and thermophoretic particle deposition process in the flow of micropolar nanofluid over a stretching sheet
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952379/
https://www.ncbi.nlm.nih.gov/pubmed/35335789
http://dx.doi.org/10.3390/nano12060977
work_keys_str_mv AT yuyangyang nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT madhukeshjavalik nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT khanumair nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT zaibaurang nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT abdelatyabdelhaleem nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT yahiaibrahims nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT alqahtanimohammeds nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT wangfuzhang nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet
AT galalahmedm nanoparticleaggregationandthermophoreticparticledepositionprocessintheflowofmicropolarnanofluidoverastretchingsheet