Cargando…

Influence of Filament Winding Tension on the Deformation of Composite Flywheel Rotors with H-Shaped Hubs

The residual stress plays an important role in composite flywheel rotors composed of filament windings. The fiber tension during high-prestressed winding is the main source of the rotor deformation and residual stress of composite layers. In this study, the effect of the winding tension gradient on...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaodong, Li, Yong, Huan, Dajun, Liu, Hongquan, Li, Lisa, Li, Yanrui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952408/
https://www.ncbi.nlm.nih.gov/pubmed/35335485
http://dx.doi.org/10.3390/polym14061155
Descripción
Sumario:The residual stress plays an important role in composite flywheel rotors composed of filament windings. The fiber tension during high-prestressed winding is the main source of the rotor deformation and residual stress of composite layers. In this study, the effect of the winding tension gradient on deformation was monitored in real-time. Two types of in-plane winding tension fluctuation methods were developed to investigate the effect of tension on deformation. Online and offline measurements were performed for the strain acquisition. A wireless strain instrument was used for online deformation monitoring and a laser scanner was used for the offline surface reconstruction. Additionally, different filament winding strategies were carried out to improve the efficiency of the winding tension by finite element analysis. The results indicated that the deviation between numerical and experimental results was within 8%. Based on the proposed numerical method, the influence of the in-plane and out-of-plane winding tension gradient distributions on the rotation process of the H-shaped rotor was analyzed. An in-plane winding strategy with variable tension was developed, which increased the initial failure speed by 160%.