Cargando…
Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach
Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-throughput methylome datasets to identify specific methylation fingerprints in three pathological entit...
Autores principales: | Karaglani, Makrina, Panagopoulou, Maria, Baltsavia, Ismini, Apalaki, Paraskevi, Theodosiou, Theodosis, Iliopoulos, Ioannis, Tsamardinos, Ioannis, Chatzaki, Ekaterini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952417/ https://www.ncbi.nlm.nih.gov/pubmed/35328380 http://dx.doi.org/10.3390/ijms23062959 |
Ejemplares similares
-
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning
por: Panagopoulou, Maria, et al.
Publicado: (2021) -
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2020) -
Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Label-Free Human Disease Characterization through Circulating Cell-Free DNA Analysis Using Raman Spectroscopy
por: Papadakis, Vassilis M., et al.
Publicado: (2023) -
Prediction and Ranking of Biomarkers Using multiple UniReD
por: Baltsavia, Ismini, et al.
Publicado: (2022)