Cargando…

Assessment of the Influence of Size and Concentration on the Ecotoxicity of Microplastics to Microalgae Scenedesmus sp., Bacterium Pseudomonas putida and Yeast Saccharomyces cerevisiae

The harmful effects of microplastics are not yet fully revealed. This study tested harmful effects of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) microplastics were tested. Growth inhibition tests were conducted using three...

Descripción completa

Detalles Bibliográficos
Autores principales: Miloloža, Martina, Bule, Kristina, Prevarić, Viktorija, Cvetnić, Matija, Ukić, Šime, Bolanča, Tomislav, Kučić Grgić, Dajana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952821/
https://www.ncbi.nlm.nih.gov/pubmed/35335576
http://dx.doi.org/10.3390/polym14061246
Descripción
Sumario:The harmful effects of microplastics are not yet fully revealed. This study tested harmful effects of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) microplastics were tested. Growth inhibition tests were conducted using three microorganisms with different characteristics: Scenedesmus sp., Pseudomonas putida, and Saccharomyces cerevisiae. The growth inhibition test with Scenedesmus sp. is relatively widely used, while the tests with Pseudomonas putida and Saccharomyces cerevisiae were, to our knowledge, applied to microplastics for the first time. The influence of concentration and size of microplastic particles, in the range of 50–1000 mg/L and 200–600 µm, was tested. Determined inhibitions on all three microorganisms confirmed the hazardous potential of the microplastics used. Modeling of the inhibition surface showed the increase in harmfulness with increasing concentration of the microplastics. Particle size showed no effect for Scenedesmus with PE, PP and PET, Pseudomonas putida with PS, and Saccharomyces cerevisiae with PP. In the remaining cases, higher inhibitions followed a decrease in particle size. The exception was Scenedesmus sp. with PS, where the lowest inhibitions were obtained at 400 µm. Finally, among the applied tests, the test with Saccharomyces cerevisiae proved to be the most sensitive to microplastics.