Cargando…
Attention-Based Temporal-Frequency Aggregation for Speaker Verification
Convolutional neural networks (CNNs) have significantly promoted the development of speaker verification (SV) systems because of their powerful deep feature learning capability. In CNN-based SV systems, utterance-level aggregation is an important component, and it compresses the frame-level features...
Autores principales: | Wang, Meng, Feng, Dazheng, Su, Tingting, Chen, Mohan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953125/ https://www.ncbi.nlm.nih.gov/pubmed/35336315 http://dx.doi.org/10.3390/s22062147 |
Ejemplares similares
-
Bidirectional Attention for Text-Dependent Speaker Verification
por: Fang, Xin, et al.
Publicado: (2020) -
Lambda-vector modeling temporal and channel interactions for text-independent speaker verification
por: Wei, Guangcun, et al.
Publicado: (2022) -
Efficient Attention Branch Network with Combined Loss Function for Automatic Speaker Verification Spoof Detection
por: Rostami, Amir Mohammad, et al.
Publicado: (2023) -
Neural Network-Based Autonomous Search Model with Undulatory Locomotion Inspired by Caenorhabditis Elegans
por: Chen, Mohan, et al.
Publicado: (2022) -
Neural model generating klinotaxis behavior accompanied by a random walk based on C. elegans connectome
por: Chen, Mohan, et al.
Publicado: (2022)