Cargando…
Perceptually Optimal Color Representation of Fully Polarimetric SAR Imagery
The four bands of fully polarimetric SAR data convey scattering characteristics of the Earth’s background, but perceptually are not very easy for an observer to use. In this work, the four different channels of fully polarimetric SAR images, namely HH, HV, VH, and VV, are combined so that a color im...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953311/ https://www.ncbi.nlm.nih.gov/pubmed/35324622 http://dx.doi.org/10.3390/jimaging8030067 |
Sumario: | The four bands of fully polarimetric SAR data convey scattering characteristics of the Earth’s background, but perceptually are not very easy for an observer to use. In this work, the four different channels of fully polarimetric SAR images, namely HH, HV, VH, and VV, are combined so that a color image of the Earth’s background is derived that is perceptually excellent for the human eye and at the same time provides accurate information regarding the scattering mechanisms in each pixel. Most of the elementary scattering mechanisms are related to specific color and land cover types. The innovative nature of the proposed approach is due to the two different consecutive coloring procedures. The first one is a fusion procedure that moves all the information contained in the four polarimetric channels into three derived RGB bands. This is achieved by means of Cholesky decomposition and brings to the RGB output the correlation properties of a natural color image. The second procedure moves the color information of the RGB image to the CIELab color space, which is perceptually uniform. The color information is then evenly distributed by means of color equalization in the CIELab color space. After that, the inverse procedure to obtain the final RGB image is performed. These two procedures bring the PolSAR information regarding the scattering mechanisms on the Earth’s surface onto a meaningful color image, the appearance of which is close to Google Earth maps. Simultaneously, they give better color correspondence to various land cover types compared with existing SAR color representation methods. |
---|