Cargando…
A Machine Learning Approach to Predict the Rehabilitation Outcome in Convalescent COVID-19 Patients
Background: After the acute disease, convalescent coronavirus disease 2019 (COVID-19) patients may experience several persistent manifestations that require multidisciplinary pulmonary rehabilitation (PR). By using a machine learning (ML) approach, we aimed to evaluate the clinical characteristics p...
Autores principales: | Adamo, Sarah, Ambrosino, Pasquale, Ricciardi, Carlo, Accardo, Mariasofia, Mosella, Marco, Cesarelli, Mario, d’Addio, Giovanni, Maniscalco, Mauro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953386/ https://www.ncbi.nlm.nih.gov/pubmed/35330328 http://dx.doi.org/10.3390/jpm12030328 |
Ejemplares similares
-
Machine learning to predict mortality after rehabilitation among patients with severe stroke
por: Scrutinio, Domenico, et al.
Publicado: (2020) -
Performance of fractional exhaled nitric oxide in predicting response to inhaled corticosteroids in chronic cough: a meta-analysis
por: Ambrosino, Pasquale, et al.
Publicado: (2021) -
Fractional Exhaled Nitric Oxide (FeNO) in Patients with Stable Chronic Obstructive Pulmonary Disease: Short-Term Variability and Potential Clinical Implications
por: Ambrosino, Pasquale, et al.
Publicado: (2022) -
Reducing the Healthcare-Associated Infections in a Rehabilitation Hospital under the Guidance of Lean Six Sigma and DMAIC
por: Cesarelli, Giuseppe, et al.
Publicado: (2021) -
Description of a new rare alpha-1 antitrypsin mutation in Naples (Italy): PI*M S-Napoli
por: Mosella, Marco, et al.
Publicado: (2018)