Cargando…
Personalized Risk-Based Screening Design for Comparative Two-Arm Group Sequential Clinical Trials
Personalized medicine has been emerging to take into account individual variability in genes and environment. In the era of personalized medicine, it is critical to incorporate the patients’ characteristics and improve the clinical benefit for patients. The patients’ characteristics are incorporated...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953575/ https://www.ncbi.nlm.nih.gov/pubmed/35330448 http://dx.doi.org/10.3390/jpm12030448 |
Sumario: | Personalized medicine has been emerging to take into account individual variability in genes and environment. In the era of personalized medicine, it is critical to incorporate the patients’ characteristics and improve the clinical benefit for patients. The patients’ characteristics are incorporated in adaptive randomization to identify patients who are expected to get more benefit from the treatment and optimize the treatment allocation. However, it is challenging to control potential selection bias from using observed efficacy data and the effect of prognostic covariates in adaptive randomization. This paper proposes a personalized risk-based screening design using Bayesian covariate-adjusted response-adaptive randomization that compares the experimental screening method to a standard screening method based on indicators of having a disease. Personalized risk-based allocation probability is built for adaptive randomization, and Bayesian adaptive decision rules are calibrated to preserve error rates. A simulation study shows that the proposed design controls error rates and yields a much smaller number of failures and a larger number of patients allocated to a better intervention compared to existing randomized controlled trial designs. Therefore, the proposed design performs well for randomized controlled clinical trials under personalized medicine. |
---|