Cargando…
Graph-Powered Interpretable Machine Learning Models for Abnormality Detection in Ego-Things Network
In recent days, it is becoming essential to ensure that the outcomes of signal processing methods based on machine learning (ML) data-driven models can provide interpretable predictions. The interpretability of ML models can be defined as the capability to understand the reasons that contributed to...
Autores principales: | Thekke Kanapram, Divya, Marcenaro, Lucio, Martin Gomez, David, Regazzoni, Carlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953755/ https://www.ncbi.nlm.nih.gov/pubmed/35336431 http://dx.doi.org/10.3390/s22062260 |
Ejemplares similares
-
A Goal-Directed Trajectory Planning Using Active Inference in UAV-Assisted Wireless Networks
por: Krayani, Ali, et al.
Publicado: (2023) -
Graph-Powered Analytics and Machine Learning with TigerGraph
por: Lee, Victor, et al.
Publicado: (2022) -
Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications
por: Adnan, Muhammad, et al.
Publicado: (2023) -
EgoNet: identification of human disease ego-network modules
por: Yang, Rendong, et al.
Publicado: (2014) -
The ego in psychedelic drug action – ego defenses, ego boundaries, and the therapeutic role of regression
por: Buchborn, Tobias, et al.
Publicado: (2023)