Cargando…
Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor
Biofouling is one of the main drawbacks of membrane bioreactors (MBRs). Among the different methods, the quorum-quenching (QQ) technique is a novel method as it delays biofilm formation on the membrane surface through disruption of bacterial cell-to-cell communication and thus effectively mitigates...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953932/ https://www.ncbi.nlm.nih.gov/pubmed/35323763 http://dx.doi.org/10.3390/membranes12030289 |
_version_ | 1784675969998520320 |
---|---|
author | Islam, Zia Ul Ayub, Mariam Chung, Shinho Oh, Heekyong |
author_facet | Islam, Zia Ul Ayub, Mariam Chung, Shinho Oh, Heekyong |
author_sort | Islam, Zia Ul |
collection | PubMed |
description | Biofouling is one of the main drawbacks of membrane bioreactors (MBRs). Among the different methods, the quorum-quenching (QQ) technique is a novel method as it delays biofilm formation on the membrane surface through disruption of bacterial cell-to-cell communication and thus effectively mitigates membrane biofouling. QQ bacteria require a certain concentration of dissolved oxygen to show their best activities. Despite the importance of the amount of aeration, there have not been enough studies on aeration condition utilizing the separate determination of pure QQ effect and physical cleaning effect. This research aimed to find the optimum aeration intensity by separation of the two effects from QQ and physical cleaning. Three bead type conditions (no bead, vacant bead, and QQ beads) at three aeration intensities (1.5, 2.5, and 3.5 L/min representing low, medium, and high aeration intensity) were applied. From the results, no QQ effect and small QQ effect were observed at low and high aeration, while the greatest QQ effect (48.2% of 737 h improvement) was observed at medium aeration. The best performance was observed at high aeration with QQ beads having a 1536 h operational duration (303% improvement compared to the no bead condition); however, this excellent performance was attributed more to the physical cleaning effect than to the QQ effect. |
format | Online Article Text |
id | pubmed-8953932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89539322022-03-26 Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor Islam, Zia Ul Ayub, Mariam Chung, Shinho Oh, Heekyong Membranes (Basel) Article Biofouling is one of the main drawbacks of membrane bioreactors (MBRs). Among the different methods, the quorum-quenching (QQ) technique is a novel method as it delays biofilm formation on the membrane surface through disruption of bacterial cell-to-cell communication and thus effectively mitigates membrane biofouling. QQ bacteria require a certain concentration of dissolved oxygen to show their best activities. Despite the importance of the amount of aeration, there have not been enough studies on aeration condition utilizing the separate determination of pure QQ effect and physical cleaning effect. This research aimed to find the optimum aeration intensity by separation of the two effects from QQ and physical cleaning. Three bead type conditions (no bead, vacant bead, and QQ beads) at three aeration intensities (1.5, 2.5, and 3.5 L/min representing low, medium, and high aeration intensity) were applied. From the results, no QQ effect and small QQ effect were observed at low and high aeration, while the greatest QQ effect (48.2% of 737 h improvement) was observed at medium aeration. The best performance was observed at high aeration with QQ beads having a 1536 h operational duration (303% improvement compared to the no bead condition); however, this excellent performance was attributed more to the physical cleaning effect than to the QQ effect. MDPI 2022-03-02 /pmc/articles/PMC8953932/ /pubmed/35323763 http://dx.doi.org/10.3390/membranes12030289 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Islam, Zia Ul Ayub, Mariam Chung, Shinho Oh, Heekyong Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor |
title | Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor |
title_full | Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor |
title_fullStr | Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor |
title_full_unstemmed | Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor |
title_short | Effect of Aeration Intensity on Performance of Lab-Scale Quorum-Quenching Membrane Bioreactor |
title_sort | effect of aeration intensity on performance of lab-scale quorum-quenching membrane bioreactor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953932/ https://www.ncbi.nlm.nih.gov/pubmed/35323763 http://dx.doi.org/10.3390/membranes12030289 |
work_keys_str_mv | AT islamziaul effectofaerationintensityonperformanceoflabscalequorumquenchingmembranebioreactor AT ayubmariam effectofaerationintensityonperformanceoflabscalequorumquenchingmembranebioreactor AT chungshinho effectofaerationintensityonperformanceoflabscalequorumquenchingmembranebioreactor AT ohheekyong effectofaerationintensityonperformanceoflabscalequorumquenchingmembranebioreactor |