Cargando…
Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria
Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954004/ https://www.ncbi.nlm.nih.gov/pubmed/35328413 http://dx.doi.org/10.3390/ijms23062992 |
_version_ | 1784675987468845056 |
---|---|
author | Singh, Ravindra Pal Bhaiyya, Raja Thakur, Raksha Niharika, Jayashree Singh, Chandrajeet Latousakis, Dimitrios Saalbach, Gerhard Nepogodiev, Sergey A. Singh, Praveen Sharma, Sukesh Chander Sengupta, Shantanu Juge, Nathalie Field, Robert A. |
author_facet | Singh, Ravindra Pal Bhaiyya, Raja Thakur, Raksha Niharika, Jayashree Singh, Chandrajeet Latousakis, Dimitrios Saalbach, Gerhard Nepogodiev, Sergey A. Singh, Praveen Sharma, Sukesh Chander Sengupta, Shantanu Juge, Nathalie Field, Robert A. |
author_sort | Singh, Ravindra Pal |
collection | PubMed |
description | Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to utilise xylan derivatives. We showed that L. reuteri ATCC 53608 and B. producta ATCC 27340 produced β-D-xylosidases, enabling growth on xylooligosaccharide (XOS). The recombinant enzymes were highly active on artificial (p-nitrophenyl β-D-xylopyranoside) and natural (xylobiose, xylotriose, and xylotetraose) substrates, and showed transxylosylation activity and tolerance to xylose inhibition. The enzymes belong to glycoside hydrolase family 120 with Asp as nucleophile and Glu as proton donor, as shown by homology modelling and confirmed by site-directed mutagenesis. In silico analysis revealed that these enzymes were part of a gene cluster in L. reuteri but not in Blautia strains, and quantitative proteomics identified other enzymes and transporters involved in B. producta XOS utilisation. Based on these findings, we proposed a model for an XOS metabolism pathway in L. reuteri and B. producta strains. Together with phylogenetic analyses, the data also revealed the extended xylanolytic potential of the gut microbiota. |
format | Online Article Text |
id | pubmed-8954004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89540042022-03-26 Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria Singh, Ravindra Pal Bhaiyya, Raja Thakur, Raksha Niharika, Jayashree Singh, Chandrajeet Latousakis, Dimitrios Saalbach, Gerhard Nepogodiev, Sergey A. Singh, Praveen Sharma, Sukesh Chander Sengupta, Shantanu Juge, Nathalie Field, Robert A. Int J Mol Sci Article Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to utilise xylan derivatives. We showed that L. reuteri ATCC 53608 and B. producta ATCC 27340 produced β-D-xylosidases, enabling growth on xylooligosaccharide (XOS). The recombinant enzymes were highly active on artificial (p-nitrophenyl β-D-xylopyranoside) and natural (xylobiose, xylotriose, and xylotetraose) substrates, and showed transxylosylation activity and tolerance to xylose inhibition. The enzymes belong to glycoside hydrolase family 120 with Asp as nucleophile and Glu as proton donor, as shown by homology modelling and confirmed by site-directed mutagenesis. In silico analysis revealed that these enzymes were part of a gene cluster in L. reuteri but not in Blautia strains, and quantitative proteomics identified other enzymes and transporters involved in B. producta XOS utilisation. Based on these findings, we proposed a model for an XOS metabolism pathway in L. reuteri and B. producta strains. Together with phylogenetic analyses, the data also revealed the extended xylanolytic potential of the gut microbiota. MDPI 2022-03-10 /pmc/articles/PMC8954004/ /pubmed/35328413 http://dx.doi.org/10.3390/ijms23062992 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Singh, Ravindra Pal Bhaiyya, Raja Thakur, Raksha Niharika, Jayashree Singh, Chandrajeet Latousakis, Dimitrios Saalbach, Gerhard Nepogodiev, Sergey A. Singh, Praveen Sharma, Sukesh Chander Sengupta, Shantanu Juge, Nathalie Field, Robert A. Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria |
title | Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria |
title_full | Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria |
title_fullStr | Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria |
title_full_unstemmed | Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria |
title_short | Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria |
title_sort | biochemical basis of xylooligosaccharide utilisation by gut bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954004/ https://www.ncbi.nlm.nih.gov/pubmed/35328413 http://dx.doi.org/10.3390/ijms23062992 |
work_keys_str_mv | AT singhravindrapal biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT bhaiyyaraja biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT thakurraksha biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT niharikajayashree biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT singhchandrajeet biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT latousakisdimitrios biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT saalbachgerhard biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT nepogodievsergeya biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT singhpraveen biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT sharmasukeshchander biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT senguptashantanu biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT jugenathalie biochemicalbasisofxylooligosaccharideutilisationbygutbacteria AT fieldroberta biochemicalbasisofxylooligosaccharideutilisationbygutbacteria |