Cargando…

Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria

Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Ravindra Pal, Bhaiyya, Raja, Thakur, Raksha, Niharika, Jayashree, Singh, Chandrajeet, Latousakis, Dimitrios, Saalbach, Gerhard, Nepogodiev, Sergey A., Singh, Praveen, Sharma, Sukesh Chander, Sengupta, Shantanu, Juge, Nathalie, Field, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954004/
https://www.ncbi.nlm.nih.gov/pubmed/35328413
http://dx.doi.org/10.3390/ijms23062992
_version_ 1784675987468845056
author Singh, Ravindra Pal
Bhaiyya, Raja
Thakur, Raksha
Niharika, Jayashree
Singh, Chandrajeet
Latousakis, Dimitrios
Saalbach, Gerhard
Nepogodiev, Sergey A.
Singh, Praveen
Sharma, Sukesh Chander
Sengupta, Shantanu
Juge, Nathalie
Field, Robert A.
author_facet Singh, Ravindra Pal
Bhaiyya, Raja
Thakur, Raksha
Niharika, Jayashree
Singh, Chandrajeet
Latousakis, Dimitrios
Saalbach, Gerhard
Nepogodiev, Sergey A.
Singh, Praveen
Sharma, Sukesh Chander
Sengupta, Shantanu
Juge, Nathalie
Field, Robert A.
author_sort Singh, Ravindra Pal
collection PubMed
description Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to utilise xylan derivatives. We showed that L. reuteri ATCC 53608 and B. producta ATCC 27340 produced β-D-xylosidases, enabling growth on xylooligosaccharide (XOS). The recombinant enzymes were highly active on artificial (p-nitrophenyl β-D-xylopyranoside) and natural (xylobiose, xylotriose, and xylotetraose) substrates, and showed transxylosylation activity and tolerance to xylose inhibition. The enzymes belong to glycoside hydrolase family 120 with Asp as nucleophile and Glu as proton donor, as shown by homology modelling and confirmed by site-directed mutagenesis. In silico analysis revealed that these enzymes were part of a gene cluster in L. reuteri but not in Blautia strains, and quantitative proteomics identified other enzymes and transporters involved in B. producta XOS utilisation. Based on these findings, we proposed a model for an XOS metabolism pathway in L. reuteri and B. producta strains. Together with phylogenetic analyses, the data also revealed the extended xylanolytic potential of the gut microbiota.
format Online
Article
Text
id pubmed-8954004
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89540042022-03-26 Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria Singh, Ravindra Pal Bhaiyya, Raja Thakur, Raksha Niharika, Jayashree Singh, Chandrajeet Latousakis, Dimitrios Saalbach, Gerhard Nepogodiev, Sergey A. Singh, Praveen Sharma, Sukesh Chander Sengupta, Shantanu Juge, Nathalie Field, Robert A. Int J Mol Sci Article Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to utilise xylan derivatives. We showed that L. reuteri ATCC 53608 and B. producta ATCC 27340 produced β-D-xylosidases, enabling growth on xylooligosaccharide (XOS). The recombinant enzymes were highly active on artificial (p-nitrophenyl β-D-xylopyranoside) and natural (xylobiose, xylotriose, and xylotetraose) substrates, and showed transxylosylation activity and tolerance to xylose inhibition. The enzymes belong to glycoside hydrolase family 120 with Asp as nucleophile and Glu as proton donor, as shown by homology modelling and confirmed by site-directed mutagenesis. In silico analysis revealed that these enzymes were part of a gene cluster in L. reuteri but not in Blautia strains, and quantitative proteomics identified other enzymes and transporters involved in B. producta XOS utilisation. Based on these findings, we proposed a model for an XOS metabolism pathway in L. reuteri and B. producta strains. Together with phylogenetic analyses, the data also revealed the extended xylanolytic potential of the gut microbiota. MDPI 2022-03-10 /pmc/articles/PMC8954004/ /pubmed/35328413 http://dx.doi.org/10.3390/ijms23062992 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Singh, Ravindra Pal
Bhaiyya, Raja
Thakur, Raksha
Niharika, Jayashree
Singh, Chandrajeet
Latousakis, Dimitrios
Saalbach, Gerhard
Nepogodiev, Sergey A.
Singh, Praveen
Sharma, Sukesh Chander
Sengupta, Shantanu
Juge, Nathalie
Field, Robert A.
Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria
title Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria
title_full Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria
title_fullStr Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria
title_full_unstemmed Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria
title_short Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria
title_sort biochemical basis of xylooligosaccharide utilisation by gut bacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954004/
https://www.ncbi.nlm.nih.gov/pubmed/35328413
http://dx.doi.org/10.3390/ijms23062992
work_keys_str_mv AT singhravindrapal biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT bhaiyyaraja biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT thakurraksha biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT niharikajayashree biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT singhchandrajeet biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT latousakisdimitrios biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT saalbachgerhard biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT nepogodievsergeya biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT singhpraveen biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT sharmasukeshchander biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT senguptashantanu biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT jugenathalie biochemicalbasisofxylooligosaccharideutilisationbygutbacteria
AT fieldroberta biochemicalbasisofxylooligosaccharideutilisationbygutbacteria