Cargando…
Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli
The emergence and dissemination of antibiotic resistance threaten the treatment of common bacterial infections. Resistance genes are often encoded on conjugative elements, which can be horizontally transferred to diverse bacteria. In order to delay conjugative transfer of resistance genes, more info...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954029/ https://www.ncbi.nlm.nih.gov/pubmed/35336183 http://dx.doi.org/10.3390/microorganisms10030608 |
_version_ | 1784675993216090112 |
---|---|
author | Van Wonterghem, Laetitia De Chiara, Matteo Liti, Gianni Warringer, Jonas Farewell, Anne Verstraeten, Natalie Michiels, Jan |
author_facet | Van Wonterghem, Laetitia De Chiara, Matteo Liti, Gianni Warringer, Jonas Farewell, Anne Verstraeten, Natalie Michiels, Jan |
author_sort | Van Wonterghem, Laetitia |
collection | PubMed |
description | The emergence and dissemination of antibiotic resistance threaten the treatment of common bacterial infections. Resistance genes are often encoded on conjugative elements, which can be horizontally transferred to diverse bacteria. In order to delay conjugative transfer of resistance genes, more information is needed on the genetic determinants promoting conjugation. Here, we focus on which bacterial host factors in the donor assist transfer of conjugative plasmids. We introduced the broad-host-range plasmid pKJK10 into a diverse collection of 113 Escherichia coli strains and measured by flow cytometry how effectively each strain transfers its plasmid to a fixed E. coli recipient. Differences in conjugation efficiency of up to 2.7 and 3.8 orders of magnitude were observed after mating for 24 h and 48 h, respectively. These differences were linked to the underlying donor strain genetic variants in genome-wide association studies, thereby identifying candidate genes involved in conjugation. We confirmed the role of fliF, fliK, kefB and ucpA in the donor ability of conjugative elements by validating defects in the conjugation efficiency of the corresponding lab strain single-gene deletion mutants. Based on the known cellular functions of these genes, we suggest that the motility and the energy supply, the intracellular pH or salinity of the donor affect the efficiency of plasmid transfer. Overall, this work advances the search for targets for the development of conjugation inhibitors, which can be administered alongside antibiotics to more effectively treat bacterial infections. |
format | Online Article Text |
id | pubmed-8954029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89540292022-03-26 Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli Van Wonterghem, Laetitia De Chiara, Matteo Liti, Gianni Warringer, Jonas Farewell, Anne Verstraeten, Natalie Michiels, Jan Microorganisms Article The emergence and dissemination of antibiotic resistance threaten the treatment of common bacterial infections. Resistance genes are often encoded on conjugative elements, which can be horizontally transferred to diverse bacteria. In order to delay conjugative transfer of resistance genes, more information is needed on the genetic determinants promoting conjugation. Here, we focus on which bacterial host factors in the donor assist transfer of conjugative plasmids. We introduced the broad-host-range plasmid pKJK10 into a diverse collection of 113 Escherichia coli strains and measured by flow cytometry how effectively each strain transfers its plasmid to a fixed E. coli recipient. Differences in conjugation efficiency of up to 2.7 and 3.8 orders of magnitude were observed after mating for 24 h and 48 h, respectively. These differences were linked to the underlying donor strain genetic variants in genome-wide association studies, thereby identifying candidate genes involved in conjugation. We confirmed the role of fliF, fliK, kefB and ucpA in the donor ability of conjugative elements by validating defects in the conjugation efficiency of the corresponding lab strain single-gene deletion mutants. Based on the known cellular functions of these genes, we suggest that the motility and the energy supply, the intracellular pH or salinity of the donor affect the efficiency of plasmid transfer. Overall, this work advances the search for targets for the development of conjugation inhibitors, which can be administered alongside antibiotics to more effectively treat bacterial infections. MDPI 2022-03-12 /pmc/articles/PMC8954029/ /pubmed/35336183 http://dx.doi.org/10.3390/microorganisms10030608 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Van Wonterghem, Laetitia De Chiara, Matteo Liti, Gianni Warringer, Jonas Farewell, Anne Verstraeten, Natalie Michiels, Jan Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli |
title | Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli |
title_full | Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli |
title_fullStr | Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli |
title_full_unstemmed | Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli |
title_short | Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli |
title_sort | genome-wide association study reveals host factors affecting conjugation in escherichia coli |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954029/ https://www.ncbi.nlm.nih.gov/pubmed/35336183 http://dx.doi.org/10.3390/microorganisms10030608 |
work_keys_str_mv | AT vanwonterghemlaetitia genomewideassociationstudyrevealshostfactorsaffectingconjugationinescherichiacoli AT dechiaramatteo genomewideassociationstudyrevealshostfactorsaffectingconjugationinescherichiacoli AT litigianni genomewideassociationstudyrevealshostfactorsaffectingconjugationinescherichiacoli AT warringerjonas genomewideassociationstudyrevealshostfactorsaffectingconjugationinescherichiacoli AT farewellanne genomewideassociationstudyrevealshostfactorsaffectingconjugationinescherichiacoli AT verstraetennatalie genomewideassociationstudyrevealshostfactorsaffectingconjugationinescherichiacoli AT michielsjan genomewideassociationstudyrevealshostfactorsaffectingconjugationinescherichiacoli |