Cargando…

Chemometrically Assisted Optimization of Pregabalin Fluorescent Derivatization Reaction with a Novel Xanthone Analogue and Validation of the Method for the Determination of Pregabalin in Bulk via a Plate Reader

Quantitation of chromophore-free analytes is always a challenge. To this purpose, derivatization of the analyte constitutes a common strategy, leading to a product with a strong signal. In the current study, a novel xanthone analogue was utilized for the first time for the derivatization of pregabal...

Descripción completa

Detalles Bibliográficos
Autores principales: Kritikos, Nikolaos, Iliou, Aikaterini, Kalampaliki, Amalia D., Gikas, Evangelos, Kostakis, Ioannis K., Michel, Benoît Y., Dotsikas, Yannis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954069/
https://www.ncbi.nlm.nih.gov/pubmed/35335315
http://dx.doi.org/10.3390/molecules27061954
Descripción
Sumario:Quantitation of chromophore-free analytes is always a challenge. To this purpose, derivatization of the analyte constitutes a common strategy, leading to a product with a strong signal. In the current study, a novel xanthone analogue was utilized for the first time for the derivatization of pregabalin, a model analyte with a primary amine moiety that lacks a chromophore. The fact that only the xanthene-based derivative, formed after the derivatization reaction fluoresces, enables avoiding its chromatographic separation from the reagent and thus reducing the analysis time of a series of samples in 1–2 min via a plate reader. The reaction conditions were optimized via a central composite design (CCD), with fluorescence signal as the measure of the yield. The following factors that affect the derivatization reaction were chosen: (a) temperature, (b) reaction time, and (c) triethylamine solution volume used to drive the reaction to completion. After the identification of the optimal conditions, the method was validated according to ICH guidelines, using a fluorescence plate reader for signal measurement (λ(ex) = 540, λ(em) = 615 nm). Finally, the newly developed high-throughput method was applied to the determination of drug content in pregabalin bulk.