Cargando…
A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules
Citral is a typical UV-irritation and acid-sensitive active and here we develop a mild method for the encapsulation of citral in calcium alginate microcapsules, in which UV irritation or acetic acid is avoided. Monodispersed oil-in-water-in-oil (O/W/O) emulsions are generated in a capillary microflu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954088/ https://www.ncbi.nlm.nih.gov/pubmed/35335496 http://dx.doi.org/10.3390/polym14061165 |
Sumario: | Citral is a typical UV-irritation and acid-sensitive active and here we develop a mild method for the encapsulation of citral in calcium alginate microcapsules, in which UV irritation or acetic acid is avoided. Monodispersed oil-in-water-in-oil (O/W/O) emulsions are generated in a capillary microfluidic device as precursors. The middle aqueous phase of O/W/O emulsions contains sodium alginate, calcium-ethylenediaminetetraacetic acid (EDTA-Ca) complex as the calcium source, and D-(+)-Gluconic acid δ-lactone (GDL) as the acidifier. Hydrolysis of GDL will decrease the pH value of the middle aqueous solution, which will trigger the calcium ions released from the EDTA-Ca complex to cross-link with alginate molecules. After the gelling process, the O/W/O emulsions will convert to alginate microcapsules with a uniform structure and monodispersed size. The preparation conditions for alginate microcapsules are optimized, including the constituent concentration in the middle aqueous phase of O/W/O emulsions and the mixing manner of GDL with the alginate-contained aqueous solution. Citral-containing alginate microcapsules are successfully prepared by this mild method and the sustained-release characteristic of citral from alginate microcapsules is analyzed. Furthermore, a typical application of citral-containing alginate microcapsules to delay the oxidation of oil is also demonstrated. The mild gelling method provides us a chance to encapsulate sensitive hydrophobic actives with alginate, which takes many potential applications in pharmaceutical, food, and cosmetic areas. |
---|