Cargando…

Decoupling Effect of County Carbon Emissions and Economic Growth in China: Empirical Evidence from Jiangsu Province

Under the pressure of low-carbon development at county level in China, this paper takes Jiangsu province as an example to analyze the relationship between economic growth and carbon emissions, aiming to provide a reference for the low-carbon development in Jiangsu and other regions in China. Based o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Yanli, Xue, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954161/
https://www.ncbi.nlm.nih.gov/pubmed/35328962
http://dx.doi.org/10.3390/ijerph19063275
Descripción
Sumario:Under the pressure of low-carbon development at county level in China, this paper takes Jiangsu province as an example to analyze the relationship between economic growth and carbon emissions, aiming to provide a reference for the low-carbon development in Jiangsu and other regions in China. Based on the county-level panel data from 2000 to 2017, this paper uses the Tapio elasticity model and environmental Kuznets curve model, and focuses on the differences in regional economic development and the impacts of the 2008 global economic crisis. The results show that, in general, the decoupling effect of carbon emissions in Jiangsu counties has gradually increased during the study period. Since 2011, all counties achieved the speed decoupling, with more than half of them showing strong decoupling. The environmental Kuznets curves of carbon emissions in different income groups are established, and changed before and after the 2008 global economic crisis. In 2017, only 10 of the 53 counties were on the right side of the curve, realizing the quantity decoupling between the two. Therefore, to achieve a win–win situation between carbon emission reduction and economic growth, efforts should be made from the aspects of industrial structure and energy efficiency, and measures should be taken according to local conditions.