Cargando…

Towards Predicting the Sequential Appearance of Zeolitic Imidazolate Frameworks Synthesized by Mechanochemistry

We use computational materials methods to study the sequential appearance of zinc-based zeolitic imidazolate frameworks (ZIFs) generated in the mechanochemical conversion process. We consider nine ZIF topologies, namely RHO, ANA, QTZ, SOD, KAT, DIA, NEB, CAG and GIS, combined with the two ligands 2-...

Descripción completa

Detalles Bibliográficos
Autores principales: Cherif, Mohamed, Zhang, Gaixia, Gao, Yang, Sun, Shuhui, Vidal, François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954221/
https://www.ncbi.nlm.nih.gov/pubmed/35335309
http://dx.doi.org/10.3390/molecules27061946
Descripción
Sumario:We use computational materials methods to study the sequential appearance of zinc-based zeolitic imidazolate frameworks (ZIFs) generated in the mechanochemical conversion process. We consider nine ZIF topologies, namely RHO, ANA, QTZ, SOD, KAT, DIA, NEB, CAG and GIS, combined with the two ligands 2-methylimidazolate and 2-ethylimidazolate. Of the 18 combinations obtained, only six (three for each ligand) were actually observed during the mechanosynthesis process. Energy and porosity calculations based on density functional theory, in combination with the Ostwald rule of stages, were found to be insufficient to distinguish the experimentally observed ZIFs. We then show, using classical molecular dynamics, that only ZIFs withstanding quasi-hydrostatic pressure P ≥ 0.3 GPa without being destroyed were observed in the laboratory. This finding, along with the requirement that successive ZIFs be generated with decreasing porosity and/or energy, provides heuristic rules for predicting the sequences of mechanically generated ZIFs for the two ligands considered.