Cargando…

Toxic Mechanism and Biological Detoxification of Fumonisins

Food safety is related to the national economy and people’s livelihood. Fumonisins are widely found in animal feed, feed raw materials, and human food. This can not only cause economic losses in animal husbandry but can also have carcinogenicity or teratogenicity and can be left in animal meat, eggs...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Linkai, Wang, Lei, Ji, Hao, Fang, Yimeng, Lei, Pengyu, Zhang, Xingxing, Jin, Libo, Sun, Da, Dong, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954241/
https://www.ncbi.nlm.nih.gov/pubmed/35324679
http://dx.doi.org/10.3390/toxins14030182
Descripción
Sumario:Food safety is related to the national economy and people’s livelihood. Fumonisins are widely found in animal feed, feed raw materials, and human food. This can not only cause economic losses in animal husbandry but can also have carcinogenicity or teratogenicity and can be left in animal meat, eggs, and milk which may enter the human body and pose a serious threat to human health. Although there are many strategies to prevent fumonisins from entering the food chain, the traditional physical and chemical methods of mycotoxin removal have some disadvantages, such as an unstable effect, large nutrient loss, impact on the palatability of feed, and difficulty in mass production. As a safe, efficient, and environmentally friendly detoxification technology, biological detoxification attracts more and more attention from researchers and is gradually becoming an accepted technique. This work summarizes the toxic mechanism of fumonisins and highlights the advances of fumonisins in the detoxification of biological antioxidants, antagonistic microorganisms, and degradation mechanisms. Finally, the future challenges and focus of the biological control and degradation of fumonisins are discussed.