Cargando…
The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites
This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues o...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954261/ https://www.ncbi.nlm.nih.gov/pubmed/35335311 http://dx.doi.org/10.3390/molecules27061947 |
_version_ | 1784676051090145280 |
---|---|
author | Cheudjeu, Antony |
author_facet | Cheudjeu, Antony |
author_sort | Cheudjeu, Antony |
collection | PubMed |
description | This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity. |
format | Online Article Text |
id | pubmed-8954261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89542612022-03-26 The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites Cheudjeu, Antony Molecules Review This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity. MDPI 2022-03-17 /pmc/articles/PMC8954261/ /pubmed/35335311 http://dx.doi.org/10.3390/molecules27061947 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Cheudjeu, Antony The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites |
title | The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites |
title_full | The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites |
title_fullStr | The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites |
title_full_unstemmed | The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites |
title_short | The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites |
title_sort | sars-cov-2 entry inhibition mechanisms of serine protease inhibitors, om-85, heparin and soluble hs might be linked to hs attachment sites |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954261/ https://www.ncbi.nlm.nih.gov/pubmed/35335311 http://dx.doi.org/10.3390/molecules27061947 |
work_keys_str_mv | AT cheudjeuantony thesarscov2entryinhibitionmechanismsofserineproteaseinhibitorsom85heparinandsolublehsmightbelinkedtohsattachmentsites AT cheudjeuantony sarscov2entryinhibitionmechanismsofserineproteaseinhibitorsom85heparinandsolublehsmightbelinkedtohsattachmentsites |