Cargando…

Monitored and Modeled Ambient Air Concentrations of Ethylene Oxide: Contextualizing Health Risk for Potentially Exposed Populations in Georgia

Recent studies have monitored and modeled long-term ambient air concentrations of ethylene oxide (EO) around emitting facilities in Georgia with the intent of informing risk management of potentially exposed nearby residential populations. Providing health context for these data is challenging becau...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, Ryan C., Sheehan, Patrick J., DesAutels, Christopher G., Watson, Heather N., Kirman, Christopher R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954488/
https://www.ncbi.nlm.nih.gov/pubmed/35329049
http://dx.doi.org/10.3390/ijerph19063364
Descripción
Sumario:Recent studies have monitored and modeled long-term ambient air concentrations of ethylene oxide (EO) around emitting facilities in Georgia with the intent of informing risk management of potentially exposed nearby residential populations. Providing health context for these data is challenging because the U.S. Environmental Protection Agency’s risk-specific concentrations lack practical utility in distinguishing a health significant increase in exposure. This study analyzes EO data for eight emitting facilities, using a previously published alternative exposure metric, the total equivalent concentration, which is based on U.S. Centers for Disease Control biomarker data for the non-smoking U.S. population. Mean concentrations for monitoring sites were compared to mean background concentrations to assess whether emissions contribute significantly to environmental concentrations. To assess the health significance of potential exposure at nearby residential locations, the 50th percentile concentration was added to the 50th percentile endogenous equivalent concentration and compared to the total equivalent concentration distribution for the non-smoking U.S. population. The findings demonstrate that impacts from nearby emission sources are small compared to mean background concentrations at nearby locations, and the total equivalent concentrations for exposed populations are generally indistinguishable from that of the 50th percentile for the non-smoking U.S. population.